2021 School District of Onalaska
Long Range Planning Study
October 20, 2021

PART 1 - Facilities Condition Assessment

Prepared by
VANTAGE
ARCHITECTS INC
La Crosse, Wisconsin
www.vantagearchitects.com
The intent of the 2021 Facilities Condition Assessment is to:

1. Complete an updated comprehensive survey audit of current conditions of each of the School District’s main and auxiliary buildings.
2. Provide an itemized list of recommended capital improvement repairs, replacements, maintenance and upgrades.
3. Cost estimates for each capital improvement item.
4. Assign a ‘priority level’ to each item to help establish a timeline for the recommended work to be completed.

The Facilities Condition Assessment does not involve an analysis of space needs or changes to program requirements. The emphasis of this report is to evaluate current conditions of each facility with recommended capital improvements determined to be necessary to maintain the building quality for each of the various facilities.

The Assessment included a review of the following School District facilities:

- Onalaska High School
- Onalaska Middle School
- Eagle Bluff Elementary
- Irving Pertzsch Elementary
- Northern Hills Elementary
- Central Kitchen
- Riders Club Road Site & Activities Building
- District Office & Annex

The survey of these various facilities followed a structured format and involved visual observations along with input from the District’s maintenance staff.

Building Envelope: Complete a review of the roofs, exterior walls, doors and window components that comprise the ‘envelope’ enclosure for the building. Develop list of repairs, replacements or general maintenance to ensure water tightness and thermal efficiency aspects of the building surfaces and fenestration. In addition, the Assessment includes a ‘Roofing Summary’ that establishes a data base of roof areas, ages of various roofs, roof types, and roof warranties. The intent is to establish a schedule for future roof repairs and replacements based on establishing a level of roofing priorities.
Site work: Review conditions of site improvements that surround each of the facilities, which include concrete and asphalt pavement conditions, sidewalks, site drainage and athletic amenities (fields, track surfaces).

Plumbing: Inspect condition of existing plumbing systems and components including fixtures, piping, water heating and water conditioning equipment.

HVAC Systems: Observe condition and review deficiencies of the mechanical systems serving each of the buildings with emphasis on improving efficiencies and controls.

Electrical Systems: Review existing electrical systems that include panelboards and switchgear, emergency lighting, door lighting fixtures, clock systems, data system infrastructure, building security and access control.

Handicap Accessibility: Each building was evaluated for compliance with the current ADA guidelines starting with accessible parking areas, accessible routes to the building, interior circulation accessibility, toilet room facilities and ADA compliant signage. The conditions review is accompanied with recommended improvements that enhance the handicap accessibility at each of the individual schools, Central Kitchen and District Office buildings.

Priority Levels

The schedule of recommended facility improvements includes a column for designated ‘Priority Levels’ that will be assigned by the District. The intent is to maintain an ongoing list of potential work items that can be added to on an annual basis. Priority levels are subject to change depending on changing conditions that warrant re-assignment. The three Priority Levels are as follows:

Level 1

Building upgrades under this priority should receive attention as soon as practical. Further deterioration may affect weather resistance, building operations and/or immediate maintenance costs.

Level 2

Remodeling/replacement work under this level could be included within a scheduled timetable or phased in as funding is available. Improvements may be justified by increased energy efficiency.

Level 3

Proposed work under this level can be indefinitely deferred or addressed on an ‘as-needed’ basis. Repair or replacement work may be necessary for general improvements to the interior environments but will not generate any appreciable level of building operational savings.
ARCHITECTURAL | ENGINEERING CONSULTANTS

ARCHITECTS

Jerrel Schomberg, AIA
Principal | Project Manager
js@vantagearchitects.com

Jessica Wang, Assoc. AIA
Architectural Designer
608-784-2729
jw@vantagearchitects.com

CIVIL ENGINEERING

Jeff Moorhouse, LSA
608-781-3110 | 608-781-3197

PLUMBING & FIRE PROTECTION ENGINEER

Bob Novak
608-773-5800
rnov@ringdu.com

MECHANICAL ENGINEER

Randy All, P.E.
262-243-9090
randyA@fei.hvac.com

ELECTRICAL ENGINEER

Pat Popowich
608-797-9106
ppopowich@Galileo-Group.us
INDEX

School District of Onalaska
Onalaska, WI 54650

PART 1 - FACILITIES CONDITION ASSESSMENT

Onalaska High School

- Facilities Assessment - Architectural
- Building Addition Key Plans
- Existing Floor Plans
- Current Usage Floor Plans
- Facilities Assessment - Site
- Site Aerial Photo/Map
- Facilities Assessment - Plumbing
- Facilities Assessment - HVAC
- Facilities Assessment - Electrical
- Cost Items

Page Number
- HS: 1 - 23
- HS: 24 - 25
- HS: 26 - 27
- HS: 28 - 30
- HS: 31 - 36
- HS: 37 - 38
- HS: 39 - 41
- HS: 42 - 44
- HS: 45 - 59
- HS: 60 - 63

Onalaska Middle School

- Facilities Assessment - Architectural
- Building Addition Key Plan
- Existing Floor Plan
- Current Usage Floor Plan
- Facilities Assessment - Site
- Site Aerial Photo/Map
- Facilities Assessment - Plumbing
- Facilities Assessment - HVAC
- Facilities Assessment - Electrical
- Cost Items

Page Number
- MS: 1 - 19
- MS: 20
- MS: 21
- MS: 22
- MS: 23 - 26
- MS: 27 - 28
- MS: 29 - 30
- MS: 31 - 33
- MS: 34 - 46
- MS: 47 - 49
Eagle Bluff Elementary

<table>
<thead>
<tr>
<th>Facilities Assessment</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>EB: 1 - 11</td>
</tr>
<tr>
<td>Existing Floor Plans</td>
<td>EB: 12 - 13</td>
</tr>
<tr>
<td>Current Usage Floor Plans</td>
<td>EB: 14 - 15</td>
</tr>
<tr>
<td>Site Aerial Photo/Map</td>
<td>EB: 16 - 21</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>EB: 22 - 23</td>
</tr>
<tr>
<td>Facilities Assessment - HVAC</td>
<td>EB: 24 - 25</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>EB: 26 - 27</td>
</tr>
<tr>
<td>Cost Items</td>
<td>EB: 28 - 41</td>
</tr>
<tr>
<td></td>
<td>EB: 42 - 43</td>
</tr>
</tbody>
</table>

Irving Pertzsch Elementary

<table>
<thead>
<tr>
<th>Facilities Assessment</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>IP: 1 - 11</td>
</tr>
<tr>
<td>Existing Floor Plans</td>
<td>IP: 12 - 13</td>
</tr>
<tr>
<td>Current Usage Floor Plans</td>
<td>IP: 14 - 15</td>
</tr>
<tr>
<td>Site Aerial Photo/Map</td>
<td>IP: 16 - 20</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>IP: 21</td>
</tr>
<tr>
<td>Facilities Assessment - HVAC</td>
<td>IP: 22 - 23</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>IP: 24 - 27</td>
</tr>
<tr>
<td>Cost Items</td>
<td>IP: 28 - 40</td>
</tr>
<tr>
<td></td>
<td>IP: 41 - 43</td>
</tr>
</tbody>
</table>

Northern Hills Elementary

<table>
<thead>
<tr>
<th>Facilities Assessment</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Architectural</td>
<td>NH: 1 - 10</td>
</tr>
<tr>
<td>Existing Floor Plans</td>
<td>NH: 11 - 12</td>
</tr>
<tr>
<td>Current Usage Floor Plans</td>
<td>NH: 13 - 14</td>
</tr>
<tr>
<td>Site Aerial Photo/Map</td>
<td>NH: 15 - 19</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>NH: 20</td>
</tr>
<tr>
<td>Facilities Assessment - HVAC</td>
<td>NH: 21 - 22</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>NH: 23 - 25</td>
</tr>
<tr>
<td>Cost Items</td>
<td>NH: 26 - 34</td>
</tr>
<tr>
<td></td>
<td>NH: 35</td>
</tr>
<tr>
<td>Riders Club Road Site & Activities Building</td>
<td>Page Number</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>Facilities Assessment - Architectural</td>
<td>RC: 1 - 7</td>
</tr>
<tr>
<td>Existing Floor Plan</td>
<td>RC: 8</td>
</tr>
<tr>
<td>Facilities Assessment - Site</td>
<td>RC: 9 - 13</td>
</tr>
<tr>
<td>Site Aerial Photo/Map</td>
<td>RC: 14 - 15</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>RC: 16</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>RC: 17 - 19</td>
</tr>
<tr>
<td>Cost Items</td>
<td>RC: 20</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Central Kitchen</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Assessment - Architectural</td>
<td>CK: 1 - 9</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>CK: 10 - 11</td>
</tr>
<tr>
<td>Facilities Assessment - HVAC (Included in MS)</td>
<td>MS: 31 - 33</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>CK: 12 - 17</td>
</tr>
<tr>
<td>Cost Items</td>
<td>CK: 18 - 19</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>District Office & Annex</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Assessment - Architectural</td>
<td>DO: 1 - 12</td>
</tr>
<tr>
<td>Existing Floor Plans</td>
<td>DO: 13 - 14</td>
</tr>
<tr>
<td>Current Usage Floor Plan</td>
<td>DO: 15</td>
</tr>
<tr>
<td>Facilities Assessment - Site</td>
<td>DO: 16 - 18</td>
</tr>
<tr>
<td>Site Aerial Photo/Map</td>
<td>DO: 19</td>
</tr>
<tr>
<td>Facilities Assessment - Plumbing</td>
<td>DO: 20 - 22</td>
</tr>
<tr>
<td>Facilities Assessment - HVAC</td>
<td>DO: 23 - 24</td>
</tr>
<tr>
<td>Facilities Assessment - Electrical</td>
<td>DO: 25 - 35</td>
</tr>
<tr>
<td>Cost Items</td>
<td>DO: 36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>French Road Site</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>French Road Cover</td>
<td>FR: 1</td>
</tr>
<tr>
<td>Facilities Assessment - Site</td>
<td>FR: 2 - 3</td>
</tr>
<tr>
<td>Roofing Summary</td>
<td>Page Number</td>
</tr>
<tr>
<td>---</td>
<td>-------------</td>
</tr>
<tr>
<td>Roof Cover</td>
<td>RS: 1</td>
</tr>
<tr>
<td>Roof Repair Priority Levels</td>
<td>RS: 2</td>
</tr>
<tr>
<td>Roof Data Sheets</td>
<td>RS: 3 - 9</td>
</tr>
<tr>
<td>High School Roof Key Plan</td>
<td>RS: 10</td>
</tr>
<tr>
<td>Middle School Roof Key Plan</td>
<td>RS: 11</td>
</tr>
<tr>
<td>Eagle Bluff Roof Key Plan</td>
<td>RS: 12</td>
</tr>
<tr>
<td>Irving Pertzsch Roof Key Plan</td>
<td>RS: 13</td>
</tr>
<tr>
<td>Northern Hills Roof Key Plan</td>
<td>RS: 14</td>
</tr>
<tr>
<td>Riders Club Road Site & Activities Building Roof Key Plan</td>
<td>RS: 15</td>
</tr>
<tr>
<td>District Office & Annex Roof Key Plan</td>
<td>RS: 16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cost Summary</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Condition Assessment Cost Summary</td>
<td>CS: 1</td>
</tr>
</tbody>
</table>
Building Data:

Building Area

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Original Building</td>
<td>31,020 SF</td>
</tr>
<tr>
<td>1968</td>
<td>Addition</td>
<td>57,871 SF</td>
</tr>
<tr>
<td>1988</td>
<td>Addition</td>
<td>134,503 SF</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>223,394 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification

- Educational Group – E

Construction Type

- Type II-B

Fire Protection

- Non-Sprinklered

Construction Projects/Dates

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Original Construction</td>
</tr>
<tr>
<td>1968</td>
<td>Additions and remodeling</td>
</tr>
<tr>
<td>1988</td>
<td>Additions and remodeling</td>
</tr>
</tbody>
</table>
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on April 1st & 5th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The exterior walls were constructed of masonry bearing walls comprised of modular and Norman face brick over concrete block. The original 1960 building and 1968 additions were constructed as solid masonry without any rigid cavity or surface applied insulation. The exterior masonry walls of the 1988 high school addition were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and an 8” concrete block backer.

B. Observations

1. In general, the exterior face brick remains in very good condition. Two locations on the west end of the building exhibit minor cracking that could easily be repaired. Mortar joints appear to be in satisfactory condition with various locations requiring re-pointing.

2. The brick walls constructed as part of the 1988 addition utilized a particular plastic tube weep vent at the bottom of the wall, which appear to be partially (if not totally) plugged limiting the moisture weep capabilities. There were no indications that the plugged weep vents are problematic but may warrant a future project to clean out the weep vents.

3. Overall, control joints are in good condition. A number of brick expansion joints demonstrate aging and cracking. At some of the expansion joints, the caulking has been partially ‘squeezed’ out of the brick head joints likely due to brick expansion.
4. Metal roof edge fascia, flashings and wall caps also appear to be in relatively good condition and do not warrant any immediate action.

5. Limited wall areas of the 1988 addition were clad with an exterior acrylic stucco surface. The surface appears to be functioning as a weather barrier but shows some signs of aging, to be expected. A couple of hairline cracks were observed that may be a result of seasonal expansion and shrinkage cycles.

6. South entrance ‘P’ displays ongoing moisture leaks from open joints in stone and lack of flashing. Interior water damage has occurred in adjacent classroom ceilings.

C. Recommendations

1. Various control joints should be cut out and re-caulked. Control joints that display brick expansion should be monitored on an annual basis to ensure they maintain a waterproof joint.

2. The District may want to consider re-coating the acrylic stucco with a new flexible elastomeric coating that will reinforce the weather-tightness of these wall areas.

3. Flashing above arches or sealant in head stones need to be considered at South entrance ‘P’ in order to minimize ongoing water damage.
A. Existing Data
 1. A building wide window replacement project was completed between 2012 and 2017. The high school presently utilizes all aluminum windows.

B. Observations
 1. Aluminum thermal pane windows remain in good condition.

C. Recommendations
 1. No recommendations at this time.

BUILDING ENVELOPE: DOORS

A. Existing Data
 1. All aluminum entrance doors and hollow metal doors and frames were replaced in 2018.
 2. All gym doors and the Building & Grounds entry door were replaced with fiberglass doors and frames.
 3. O.H. Doors and accompanying man doors outside Tech Ed. have not been updated.

B. Observations
 1. Aluminum entrances remain in good condition.
 2. Fiberglass doors ‘I’ & ‘G’ show wear on lower portion of doors.

C. Recommendations
 1. The age and efficiency of existing O.H. Doors and man doors should be considered for future replacement.
A. Existing Data

1. **1960 Original Building:** The roof structure includes multiple framing types. The original 1960 building was constructed with a combination of Tectum decking bearing on a bulb tee system. The original gymnasium was constructed with laminated wood frames and purlins. The original roofing was specified as built-up roofing, which has since been reroofed.

2. **1968 Addition:** The roof framing for the 1968 additions consisted of steel open web “bar joists” coupled with a poured gypsum deck system that was pitched for drainage to the internal roof drains.

3. **1988 Addition:** Roof framing was comprised of steel bar joists with steel decking.

4. The high school roofing is separated by multiple parapets, raised mechanical penthouses, and roofs of different elevations. With exception of a small sloped shingle area on the west end of the school, the individual roof areas are of a ballasted and fully-adhered single-
ply rubber roofing over various thicknesses of rigid insulation. In 2006, selected areas were re-roofed with a fully-adhered 60 mil single-ply rubber membrane, including the sloped roof above the auditorium. The balance of the roofing from the 1988 additions is comprised of a ballasted rubber membrane.

B. Observations
1. Based on discussions with the District’s roofing consultant, Bechtel LLC, it was noted that in general, the existing rubber roofing is in satisfactory condition with an indefinite remaining life-span.
2. The typical shrinkage of the single-ply membrane roofing was noted to be expected for a roof approaching 27 years of age. The shrinkage primarily shows up where the rubber membrane is pulling away (‘tenting’) from the vertically flashed face of the wall.

C. Recommendations
1. The primary areas of focus should be directed at the ballasted roof membrane seams and perimeter roof edge conditions. It was recommended that the perimeter membrane be cut and re-flashed with a reinforced perimeter strip.
2. Roof curbs for mechanical equipment and skylights should also be re-flashed.
3. Properly maintained, the lifespan of the existing roofs could be extended indefinitely or at least added to the list of deferred maintenance projects. The decision to re-roof areas of the high school may be evaluated on a cost basis that compares the cost to repair the perimeter flashings and seams versus tear-off and replacement of the entire rubber membrane.
A. Existing Data
 1. Hose bibs are original.
 2. All planters are original.
 3. Soffits at entry are original tectum panels.

B. Observations
 1. A number of hose bibs show ongoing leakage or separation from exterior walls.
 2. Stone planter caps have shifted in areas and begun separating from the building. Aluminum covers show age and wear.
 3. Grade at multiple areas have washed away from building perimeter.
 4. Various areas show separation between exterior walls and concrete stoops.

C. Recommendations
 1. Hose bibs require sealant and monitoring to prevent continuing water damage to exterior masonry.
 2. Planter maintenance does not require immediate repair and could be addressed over time. Stone planter caps need mortar removed and need to be re-caulked. Aluminum covers could be replaced or rust removed and re-painted.
 3. Areas where grade is low does not require immediate attention. Grade could be raised to cover exposed insulation or membrane.
 4. Tectum panels are recommended to be repainted.
A. Existing Data

1. The high school includes multiple flooring materials including the following:
 a. Vinyl asbestos tile (VAT)
 b. Vinyl composition tile (VCT)
 c. Fritztile
 d. Carpet
 e. Ceramic Tile
 f. Quarry Tile
 g. Maple Gym Flooring

2. The Fritztile was used in the main lobby and commons/cafeteria as part of the 1988 addition. Fritztile was described as a terrazzo tile; however, the material is an epoxy based substrate with stone aggregate of various sizes.

3. The maple gymnasium flooring was also installed as part of the 1988 addition.

4. Carpeting is used throughout classrooms, LMC, computer labs, school offices, band room and auditorium.

B. Observations

1. In general, the various floorings are well maintained, including the remaining vinyl asbestos tile from the original construction.

2. The vinyl composition tile shows typical minor signs of cracking or telegraphing of imperfections in the concrete slab substrate.

3. The Fritztile tile appears to be well maintained and maintenance staff is satisfied with the performance of the tile in these high traffic areas.

4. Overall, carpet is in good condition. The PAC has multiple areas showing wear and detachment that requires replacement.

5. The maple gymnasium flooring was fully sanded, painted and sealed in 2020.
C. Recommendations

1. At vinyl composition tile, various floor expansion joints need to be inspected for potential trip hazards.
2. PAC carpet should be replaced entirely.

BUILDING INTERIOR: WALLS

A. Existing Data

1. The majority of interior walls are of concrete block. Rooms are created by demountable wall partitions that terminate at the acoustical ceiling.
2. Demountable partitions lack insulation above walls. Previous insulation has been slowly removed during miscellaneous projects within the school causing acoustical issues. Sound barrier was extended above drop ceiling. Insulation laying over tile was not sufficient.

B. Observations

1. Overall, concrete block walls are in satisfactory condition.
2. Fabric on demountable walls shows wear and tears in multiple areas.
3. Demountable partitions do not provide adequate sound control between rooms.

C. Recommendations

1. Demountable walls are recommended to be replaced with standard wall construction and sound insulation to minimize noise bleeds between classrooms and hallways.
A. Existing Data
1. Interior doors are generally solid core oak veneer wood doors in hollow metal frames. Fire rated door assemblies include wire glass lites.

B. Observations
1. Wood doors exhibit normal deterioration from the years of service.
2. Latch sets have been changed out to ADA compliant lever handles.

C. Recommendations
1. Wood doors can generally continue to be used and replaced on a case by case basis; however, a select number of wood doors are damaged to the point of requiring replacement.
2. Hollow metal door frames should be repaired and repainted as needed.
3. Wire glass should be removed and replaced with new fire-rated safety glass.

BUILDING INTERIOR: TOILET PARTITIONS

A. Existing Data
1. There is a mixture of solid plastic and metal toilet stall partitions throughout the school.

B. Observations
1. Metal toilet stall partitions show typical age and wear.
2. Solid plastic toilet partitions are in good condition.

C. Recommendations
1. Remaining metal partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.
A. Existing Data

1. The high school science department was included under the 1988 project and consists of six (6) lab/classrooms located in the lower level at the west end. Each of the science labs has wood cabinetry with epoxy resin work surfaces. The two chemistry labs have demonstration type fume hoods. Both chemistry labs also have emergency eyewash sinks and overhead emergency drench showers.

2. Chemistry room 119 was updated approximately 18 years ago with new faucets and gas turrets. All other gas turrets and gooseneck faucets are original (1989) and appear to be in good condition with a couple of exceptions.

3. The instructor’s demonstration tables were salvaged at the time of the 1989 construction from the previous school’s laboratories.

B. Observations

1. Island and peninsula chemistry work stations appear to be in good condition with minimal signs of damage. Salvaged storage cabinets are also used in the science prep rooms. These cabinets appeared to be well built and should have several years of service left.

2. The perimeter countertop work surfaces and student tables in the three biology and physics lab also appear to be in satisfactory condition given their age of 27 years. The student tables were originally movable and positioned in conjunction with floor pedestal type electrical receptacles. The tables were then anchored to the floor and conduit routed to the table aprons with receptacles.

3. Botany shows sign of moisture damage at walls and ceiling grid system rusting.
C. Recommendations

1. In Chemistry room 119, it is recommended that the eyewash sinks and showers be re-plumbed to add mixing valves to the water service to temper the water temperature.

2. Instructor demonstration tables could be changed out with new ADA compliant demonstration tables.

3. Conduct a detailed study of the high school lab facilities to update for current trends, ADA compliance, AV equipment, HVAC (fume hoods), plumbing, and electrical systems.

4. Botany block walls could be repainted. Moisture is causing paint to peel.

BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data

1. Finishes throughout the building are aged but in good condition overall.

2. Acoustical wall carpet is used in multiple rooms.

3. Acoustical ceilings, asbestos tile and tectum ceiling panels are used throughout the building.

4. Plastic Laminate and wood casework show minimal wear. Areas with plastic laminate counters, backsplash and sinks are worn.

5. Fire gates in the building are aged.

6. Gym partition wall is aged.

B. Observations

1. Some rooms display more wear on finishes than others.

2. Minimal sagging of 2x4 acoustical ceiling tiles occurring. Moisture damage can be found near Entry ‘R’, within the field house and miscellaneous areas in the school.

3. Acoustical wall carpet is detaching and adhesive is bleeding through in various areas.
C. Recommendations

1. Selected finishes could be slowly replaced over time based on priority level.
2. Damaged acoustical ceiling tiles shall be replaced.
3. Acoustical wall carpet should be replaced with acoustical wall panels.

BUILDING SPACES: PERFORMING ARTS CENTER (PAC)

A. Existing Data

1. The performing arts center has multiple types of finishes; floor carpet, wall carpet, block walls, acoustical panels, wood and fabric covered chairs. PAC is not properly acoustically treated.
2. The PAC currently holds 598 students. The school is approximately 940 ± students.

B. Observations

1. Overall, finishes in the PAC are aged and worn. Floor carpet is pulling up and detached in areas. Wall carpet displays moisture damage.
2. Mezzanine is accessed by stairs. Space is used for storage of props and scenery. Movability of materials appears difficult due to size of items and access to space.
3. ADA access to the stage is limited to the rear hallway and non-existent to the orchestra pit. Sound booth is not ADA accessible.
4. Stage does not have sufficient wing space or fly space for theater performances.
5. Full band of 130 students does not fit on the stage.
C. Recommendations

1. All finishes need updating. Carpet needs full replacement. Acoustical wall carpet should be replaced with proper acoustical panels.

2. Shortcomings of this area will be reviewed with the overall design study for the high school.

BUILDING SPACES: BAND / ORCHESTRA

A. Existing Data

1. Classroom is located adjacent to choir and the PAC. Practice rooms and instrument storage supplement these spaces.

2. There are currently 130 band students.

B. Observations

1. Classroom is undersized for the amount of students in the program. The perimeter of the room is utilized for instruments or storage of chairs/stands.

2. Instrument storage is inadequate in both the classroom and separate storage room. Instruments overflow into the hallways.

3. Room does not have appropriate acoustical treatment or height to accommodate proper sound distribution.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the high school.
BUILDING SPACES: CHOIR

A. Existing Data
1. Classroom is located adjacent to Band/Orchestra and the PAC. Practice rooms supplement these spaces.
2. There are currently 80 choir students.

B. Observations
1. Classroom is undersized for the amount of students in the program.
2. All practice rooms are currently filled with storage.
3. Room does not have appropriate acoustical treatment or height to accommodate proper sound distribution.

C. Recommendations
1. Shortcomings of this area will be reviewed with the overall design study for the high school.

BUILDING SPACES: LOCKER ROOMS

A. Existing Data
1. Locker rooms can be found on both levels. Team locker rooms are on the lower level and P.E. locker rooms are on the upper level adjacent to the Field House.

B. Observations
1. Toilet rooms are non-ADA compliant.
2. Lockers and finishes are outdated.
2. Team showers have been converted to individual. Entry to showers remains non-ADA with curb. P.E. showers remain group showers with two individual showers provided in the women’s.

C. Recommendations
1. Shortcomings of this area will be reviewed with the overall design study for the high school.
A. Existing Data
 1. The Tech Ed Department is a series of rooms adjacent to each other: Metal shop and wood shop with two shared classrooms in between and a separate Tech Ed lab with a classroom adjacent. Storage and workrooms supplement these spaces.
 2. The metal shop, shared classrooms and wood shop are surrounded by load bearing walls with exposed metal joist roof structure.
 3. The Tech Ed lab and adjacent rooms are surrounded by load bearing walls and interior block walls.

B. Observations
 1. Finishes are aged and general areas are dated in both shops and shared classrooms.
 2. Finishes in the Tech Ed lab with classroom and workrooms are a mix of older and newer. Finishes are in satisfactory condition.
 3. Sink areas are worn from general use.
 4. General equipment is dated and does not meet the full needs of the current program.

C. Recommendations
 1. Spaces need to be evaluated based on current and projected programmatic uses.
 2. Shortcomings of this area will be reviewed with the overall design study for the high school.
BUILDING SPACES: SCIENCE

A. Existing Data

1. Science classrooms are located on the lower level with one classroom on the main level.
2. Classrooms are designed for 24 students. Current classes are 23-29 students.

B. Observations

1. Classrooms are not adequate for larger class sizes of 23-29. Fixed tables and fixed lab areas limit flexibility of teaching space.
2. Existing classroom upstairs lacks science equipment access and lab space.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the high school.

BUILDING SPACES: UPPER MEZZANINE

A. Existing Data

1. Upper mezzanine is located above the P.E. locker rooms and accessed by stair only. There is no ADA access.
2. Mezzanine includes an open space, access to storage, weight room and bleachers with view of gym below.

B. Observations

1. Both athletes and P.E. use this space. The function and layout of the open area is inconsistent since programmatic uses change each year.
2. Open space does not have appropriate acoustical treatment. Floor material needs updating.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the high school.
A. Existing Data

1. The main bleacher facility is located at the west edge of outside lane of the running track and was originally constructed without an underneath closure. The framing consists of steel substructure with aluminum bench seating and galvanized steel guardrails.

2. The underside was closed off with prefinished ribbed metal wall panels to provide secure storage for P.E. equipment and field maintenance equipment. The north end serves as concession sales. A wood framed press box was added in the 1990’s and supported by wide flange steel columns. The west wall of the enclosed understructure includes three push-up coiling doors and three similar coiling counter doors at the concessions sales corner.

B. Observations

1. With exception of the press box, the main structure and seating assemblies appear to be in satisfactory condition.

2. O.H. Doors are coming off the track which creates an operating concern and safety hazard.

3. Storage is shared amongst several programs.

C. Recommendations

1. Replacement of the light-duty push-up coiling garage doors with heavier-duty overhead sectional doors. The door jambs at the overhead doors also show some damage, likely from moving items in and out of the enclosed storage areas. A recommendation would be to add concrete filled steel bollards at the sides of the door openings.
A. **Existing Data**

 1. The vehicle garage building located just north of the grandstands was constructed as a simple pole barn structure, wood framed with corrugated metal siding and roofing.

B. **Observations**

 1. The garage structure shows signs of wear and corrosion but can likely be used indefinitely. Overhead doors and swinging doors can be replaced; however, the building in general appears to have deteriorated to the point of total replacement.

 2. Building is currently filled with materials and equipment.

C. **Recommendations**

 1. Building can continue to be used in its current condition. Updates should be considered as part of a district wide maintenance project.

HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. **Existing Data / Observations**

 1. The Wisconsin Commercial Building Code defines an “accessible route” as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site amenities such as staff parking lots and bus loop driveways. The High School site currently provides accessible routes from the north side driveway loop to Entrance ‘E’.

B. **Recommendations**

 1. The existing curb ramp at the east end of driveway loop will need to be replaced to eliminate the raised lip.
HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. Where parking is provided, accessible parking spaces shall be provided as follows:
 a. Total Parking Spaces Provided: 301 to 400
 b. Required Number of Accessible Spaces: 8
 2. Van accessible spaces shall be provided for every eight accessible stalls. The existing parking lot includes a total of 325 spaces. There are currently five designated handicap parking stalls.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. Entrance ‘A’ into the south side lobby currently has an automatic door opener device attached to the entrance door on the east end of the entrance. Push plates have been installed on the adjacent wall surfaces on the interior and exterior sides.
 2. Entrance ‘E’ and ‘P’ also has door operators and push plates.

B. Recommendations
 1. None at this time
A. Existing Data

1. In general, all floor levels in the high school are handicap accessible. Lifts are provided at three locations. One lift is located at the east end for access between the main level corridor and the Tech Ed Dept. on the lower level. A second lift connects the main level with the kitchen floor level. A third lift is located off the corridor at the NE corner of the fieldhouse and provides access to the basement level locker rooms. An elevator is provided to connect the lower level to the main level and also connects the lobby level.

2. The Dance Studio floor level is accessed only by stairs inside the Dance Studio.

3. The upper mezzanine is accessed only by stairs.

4. Both Oasis rooms are tiered and provide ramp access to main floor space.

B. Observations

1. Non-ADA access to the dance studio and upper mezzanine limits student use.

2. See PAC section for ADA accessibility constraints.

C. Recommendations

1. Handicap access should be considered for the Dance Studio if the room is to function as the one and only room for the dance studio.

2. Access to the upper mezzanine will be reviewed with the overall design study for the high school.
HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data

1. ADA accessible toilet rooms are limited within the school. Doors have been removed at entrances into the toilet rooms in effort to provide the minimum door clearance.

2. Locker rooms were designed with one accessible private shower stall in each of the boys’ and girls’ side; however, toilet rooms do not comply with the ADA guidelines for minimum clearances.

B. Observations

1. Toilet rooms are not completely compliant with current ADA guidelines.

2. Grab bars and size of stalls do not meet current ADA guidelines.

3. Lavatories do not have proper covers or insulation over exposed pipes.

C. Recommendations

1. In general, toilet rooms will be reviewed with the overall design study for the high school to see where renovations are applicable.

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations

1. ADA compliant signage was installed throughout the school in 2016.

B. Recommendations

1. None at this time
ONALASKA HIGH SCHOOL - EXISTING FLOOR PLAN

HIGH SCHOOL LOWER LEVEL PLAN

North
SITE

The following report is the result of site visits by Jeff Moorhouse, Paragon Associates, that occurred on 4-11-21, 5-4-21, and 6-20-21. Site observations were used in the preparation of this report.

OVERVIEW

The Onalaska High School is a mature facility with much of the site infrastructure approaching the end of its useful life. Significant repaving has corrected many of the issues with paving and drainage. However, some curbs and sidewalks adjacent to paved areas still pose significant concern. Sidewalks in many areas are generally in good condition but have sagged or heaved out of alignment with the adjacent curb and result in a critical tripping hazard that should be corrected as soon as possible. Much of the sidewalk could be salvaged by mud jacking into alignment. The obvious solution to this problem on the southeast drop-off area is more complex and is likely to involve a broad reconstruct of the entire area to replace the curb/sidewalk relationship with a thickened edge profile to provide safe walkways.

SIDEWALKS

A. Existing Data

1. A large portion of the school’s sidewalks are older and have numerous locations of repair and replacement. The High School also utilizes the adjacent public sidewalks mainly on the north and southwest sides of the building for access from the surrounding residential streets.

B. Observations

1. In general, the sidewalks are in good condition with a few specific locations that should be replaced. Additionally, in locations where a section is being replaced, also replace any adjacent sections that are cracked.
C. Recommendations

1. Continue to monitor and note any cracked or lifted sidewalks.

2. Replace sidewalk sections (6 required) in front of door S (grid H4) this should be 6” reinforced on aggregate base.

3. Replace large area in front of the North Main Entrance (approximately 22x40) (grid H6).

4. Replace section previously “mud-jacked” (grid H8) tripping hazard.

5. Replace approach to stoop at doors J and K trip hazard (grid E7 and D7) and door G (grid E9).

6. Replace broken sidewalk at door P (grid F5).

7. Replace broken concrete sidewalk at ramp crossing (grid B5).

8. Patch broken sidewalk corner (grid C8).

9. Waste units near door J should be on concrete slabs (grid E7).

10. Reinstall joint seals at Doors E, N, and O (grid D5, C6, and C7).

11. Replace ADA ramps at Crosswalk and at drop-off entrance (grid I-5).

12. Replace broken curb at drop-off area (grid I5).

13. Accessible route curb openings require detectable warning fields (grid E4 and E5).
PARKING

A. Existing Data

1. The site is not in compliance with ADA code for parking. As an older facility, improvements to surfaces such as slope changes are not required however, signing and striping are not “grandfathered” and where signing and striping can be implemented to create current code compliant parking it is required to be done at the time of ANY sealcoat and restripe operation. During the last coating and striping project, the signs were not reinstalled as require to current ADA standards, specifically sign height.

B. Observations

1. Signs are too low.
C. Recommendations

1. Install signs at the required 60” from grade to the bottom of the sign.

PLAYGROUNDS

A. Existing Data

1. There are no playgrounds at Onalaska High School. See “FIELDS” section for all athletic facilities.

FIELDS

A. Existing Data

1. The running track surface appeared to be in good condition at this time.

2. The grass playing and practice areas appear to be in reasonable condition. However, these areas have likely seen less use over the last 15 months due to COVID-19 restrictions so it is hard to judge how these surfaces are under typical use right now. It is certain that less use equates to better conditions.

B. Observations

1. Drainage from the football field runs across the track. The stadium drainage also falls on the track and then leaks under the stadium enclosed spaces. This condition causes a high level of concern for water damage and in the late winter freezing and thawing conditions occur frequently. Installing a trench drain at both edges of the track would alleviate some of this concern and would certainly extend the life of the track surface and reduce (but probably not completely eliminate) the problem.
C. Recommendations

1. Long jump pits meet rule requirements but are probably 10-15’ too short for practical use. These should be extended when feasible to do so. Additionally, the space between runways should be increased by 4-6’ if the pits are going to be reconstructed to allow for simultaneous use.

2. Several locations along the south and east side enclosing fence have the top rail displaced. These should be repaired.

3. Considerable effort has been made to remove trees from the property fence lines. This practice should be continued annually to keep the operation from becoming a major event.

LANDSCAPING

A. Existing Data

1. The existing landscape is mostly old and mature and is not highly attractive but is obviously cared for.

B. Observations

1. The existing landscape is Spartan but not messy.

2. Some smaller areas near main entrances could be refreshed or replaced with more interesting and complex plantings. This would have to be followed by additional maintenance to ensure the investment is kept up.

C. Recommendations

1. Continue to monitor landscaping and remove dead or diseased branches or plants/trees.

2. Update entrance area landscapes.
A. **Existing Data**

1. Site utilities include water service, irrigation, sanitary sewer service, and storm sewers.

B. **Observations**

1. No deficiencies were seen in existing facilities.
2. Track area lacks surface drainage which causes continued storm water and ice problems in the areas around the facility.

C. **Recommendations**

1. Add drainage at the edges of both sides of the track. This would intercept field runoff and capture drainage from the stadium seating.
A. Existing Data

1. Domestic Water service is 4” with a 3” meter and 4” CW supply piping.

2. Water pressure is over 80 PSI, there is a pressure reducing valve set at 65PSI.

3. There is a deduct water meter and backflow preventer for CW supply HVAC Chillers.

4. There is a 2” backflow preventer for the HVAC boilers.

5. Water heating equipment is sealed combustion gas fired instantaneous water heating equipment. 4 units provide adequate hot water for building. The units are good condition and are operating well.

6. The building is served by a duplex Hillenbrand water softener system. Only the domestic HW piping is served by the softener system. The cooling water for the HVAC system is not served by the water softener system.

7. Plumbing fixtures are in good operational condition. WCs are wall hung flush valve are a mix of sensor operated and manual, URs are floor mount with sensor and manual flush valves, Lavatories have manual faucets.

8. Toilet Rooms in the lower level Teams room should be considered for replacement.

9. Water Piping is galvanized and copper with brass valves.

10. There is an interior exposed grease interceptor for the 4-compartment kitchen sink.
11. Tec Ed has an air compressor.
12. Gas piping is a 2PSI pressure system.
13. Sanitary waste and vent in the 1960 & 1968 addition are cast iron pipe with galvanized steel vent piping, the 1968 CI is Tru-Spun Product.
14. There is an in-floor chemical neutralization basin in the Science area, there is a MB that drains to this system.
15. There are emergency eyewashes and Emergency showers in the science area.

B. Observations
1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 4 units provide adequate hot water for building. The units are good condition and are operating well.
2. The sanitary, storm and water piping systems are functioning properly, there will be issues in the future with the galvanized steel vent piping and the Tru-Spun CI piping.
3. Water piping system is functioning properly, Galvanized Steel piping will need replacement, Valves will need to be replaced as system ages.
4. Water service would not be large enough for a fire protection system.

C. Recommendations
1. Galvanized water piping should be scheduled for replacement, original valves should also be replaced.
2. Soften the CW domestic system.
3. A camera should used to review the condition of the CI sanitary drain piping in the Team area and Field house areas of the building to determine the condition of piping
4. Other Equipment will require an annual review of condition and minor on-going maintenance as needed.

5. Add HW and a tempering valve to all of the emergency eyewashes and showers.

6. Disconnect MB from Chemical neutralization basin or discontinue usage.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 10 years.

2. Water softening equipment should be viable for another 10 years.

3. The older sanitary drain and vent piping will need increased repairs, there will be some minor repair/replacements required due to usage.

4. Plumbing fixtures/faucets/flush valves will require on going minor maintenance/replacement as needed.

5. Water piping system should start to be replaced starting with the oldest piping, valves will also require replacement.

6. The Tur-Spun CI piping should have camera work to determine its condition and sections replaced as needed.

E. Specific Areas of Concern

1. None
HVAC

The following report is the result of a site visit by Randy All, Fredericksen Engineering, Inc. that occurred on April 1st, 2021 to update previous visits that occurred on August 2nd, 2013 and March 2nd, 2018. Site observations were used in the preparation of this report.

A. Existing Data

1. The building heating system is a hot water system that consists of two (2) Burnham 100 hp packaged firetube boilers each rated at 3,348,000 btu gross output. The pumping system is a primary-secondary arrangement with variable flow system pumps. A stand-by pump is piped in parallel in both the primary and secondary loops. The hot water system pumps were replaced in 2017.

2. In 2017, a Thermal Solutions high-efficiency condensing boiler was installed to provide system hot water for summer reheat and dehumidification use as well as late spring and early fall heating at increased efficiency levels.

3. The building cooling system is a central chilled water system that consists of a Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-only arrangement with a variable flow pump. The pump was replaced in 2017 and a stand-by pump was added at that time.

4. In 2017, five (5) air handling units were replaced with new modular Daikin units with variable frequency drives to provide variable fan speed operation. The units that were replaced serve the Gymnasium, Auditorium, Cafeteria, Tech Ed area, and Classrooms.

5. The entire building is controlled by a Schneider Electric direct digital control system with a Tridium/Niagara head end.
6. Bipolar ionization air purification systems were recently installed within all air handling equipment.

B. Observations

1. The high-efficiency boiler is in good condition and, with a proper maintenance program, should continue to serve the building for another 15 years or more. The Burnham firetube boilers are in marginal condition with one of the boilers in poor condition due to an on-going condensing issue that has basically ruined the boiler.

2. Several classrooms that were previously larger and later partitioned into multiple classrooms did not receive revisions to the HVAC system zoning. As a result, multiple rooms are served by a single VAV box and a single room thermostat.

3. Several areas were found to have duct board in lieu of sheet metal duct. In addition to using NPBP ionization units, the district determined the duct board needed replacement and are phasing that project with suspected completion in 23-24.

4. Both the hot water and chilled water systems contain chemical compound feeders. The chilled water system is also served by an in-line water filter.

5. The Tridium/Niagara head end was recently upgraded to the latest version N4 which is an HTML-5 non-Java based system.

6. Air handling units AHU-2, AHU-3 and AHU-10 do not contain hot water heating coils and therefore cannot properly control discharge air temperature at the unit. AHU-3 currently contains an excessive number of filter banks (three in total) and could easily accommodate a heating coil by simply eliminating a filter section.
C. Recommendations

1. Provide additional VAV boxes as needed to the classroom spaces that have been partitioned in the past without HVAC revisions.

2. Remove the aging Burnham firetube boilers and install a new high-efficiency condensing boiler plant with a variable speed pumping system to serve the entire building.

3. Replace the existing hot water system air separator with a new magnetic air and dirt separator to remove unwanted contaminants and metal particulates from the system that can damage control valves and other devices.

4. Install hot water heating coils in existing air handling units AHU-2, AHU-3, and AHU-10 to provide improved discharge air temperature control for each system.

5. Continue to maintain the existing digital control system by keeping the software current.

6. Continue to replace all duct board as needed.
ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group, LLC that occurred on April 26, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

MAIN ELECTRICAL SERVICE

A. Existing Data

1. This school has a 2,000-amp 480Y/277 volt 3-phase 4-wire underground electric service. The service is fed from an exterior utility owned pad mounted transformer provided by XCEL Energy Utility Company. The CT’s are integral to the main switchboard. The meter socket is mounted on the switchboard. The main service switchboard consists of a 2,000-amp fused disconnect switch section and a fused disconnect switch distribution section for the branch feeders. This service equipment was installed in 1988. The switchboard is General Electric manufacturer, current age is approximately 33 years. There are 3 spare fused switch sections: one 400 amp, and one 100 amp and one 60 amp in the switchboard.

B. Observations

1. The main Switch Board is in good working condition with no issues reported by Maintenance Staff.

2. The main service switchboard does not have a surge protection device.

3. The existing 1960 Switchboard located in what is referred to as the ‘Laundry Room #211C should be removed and replaced with new. This switchboard feeds an existing air handling unit, woods and Metals Shop Panelboards, Panel LCF-2 and unlabeled Panels. Switchboard is fed from the 1988 Switchboard.
C. Recommendations

1. Provide surge protection device on main service. $4,400.
2. Provide a new 600 amp. (minimum) distribution panelboard to replace 1960 switchboard. $16,500.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main service switchboard is about 15 - 20 more years. However, with the minimal amount of ‘Spare’ fused switches, no major additional loads (larger than 400 amps) could be added without expanding the existing switchboard.

PANELBOARDS

A. Existing Data

1. The panelboards are General Electric and were installed in 1968 or 1988.

B. Observations

1. All existing panelboards are generally full and do not have space for additional circuit breakers.
2. The panelboards that were installed in 1968 are at the end of their useful life due to the operating lifespan of circuit breakers.
3. The panelboards that were installed in 1988 are in good working order. However as noted above are full and have minimal space for additional circuit breakers.
4. In the Kitchen by the Service Line, the panelboard is full and should be replaced with a new larger panelboard. It is also the opinion of this writer; the existing panelboard should be relocated to a better location. $4,000.
C. Recommendations

1. Replace the 1968 panelboards and feeder wire with new. New circuit breakers will allow for a safer and more expandable installation. $7,700 EA for a Total of $154,000.

2. Provide one additional panelboard located adjacent to each 1988 panelboard. Observed a minimum of Seven (7) additional panelboards required. $4,400 Each for a Total of $31,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the 1968 panelboards is about 0 - 5 more years and should be replaced as soon as possible.

2. The expected remaining lifespan of the 1988 panelboards is about 15-20 more years.
A. Existing Data

1. This building has a 50 KW Kohler natural gas fueled generator. The generator is liquid cooled. It was installed in 1988. The generator is located in the gym mezzanine mechanical room.

2. There is one Kohler automatic transfer switch mounted next to the generator.

B. Observations

1. The emergency panel fed from the transfer switch contains both life safety and equipment loads.

2. The generator is in good working order.

C. Recommendations

1. Provide an additional automatic transfer switch to separate life safety from non-life safety loads on the emergency power distribution system as required by current life safety code. $33,000

2. Provide UL 924 listed emergency bypass relays to the emergency egress lighting circuits powered by the generator to allow the egress lights to automatically come on upon loss of normal power. $11,000

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the generator and automatic transfer switch is about 15 more years.
LIGHTING FIXTURES AND CONTROLS

A. Existing Data

1. The classrooms have 2x4 2-lamp fluorescent lay-in fixtures with acrylic lens that are 9 years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two switches that control two separate banks of lights. The light fixtures are on 8’ X 8’ centers.

2. The corridors have 2x4 fluorescent lay-in 2-lamp fixtures with acrylic lens that are 9-year-old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors. The fixtures are spaced 14’ on center.

3. Exterior fixtures are LED and were recently installed in 2017.

B. Observations

1. Existing Fluorescent lighting fixtures shall be replaced with LED.

C. Recommendations

1. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $250/fixture.

2. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $737,200.

3. For Specialized Instruction areas such as Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.50/sq.ft.
D. Expected Remaining Lifespan

1. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

2. Approximately 25 years for exterior LED fixtures.

WIRING DEVICES

A. Existing Data

1. The receptacles and toggle switches are commercial grade 15A with stainless steel plates.

2. There is one receptacle per wall in a typical classroom.

B. Observations

1. Many switches and receptacles have been recently replaced.

2. Several Receptacles are broken and need replacing in heavy use areas such as Art Room and Metal/Wood Shops, Etc.

3. It has been reported by Maintenance staff that additional branch-circuits should be added for classrooms. In some classrooms more than one classroom share the same electrical branch circuit.

C. Recommendations

1. Replace any broken switches and receptacles. $35 each.

2. Add additional receptacles to classrooms as required. $400 EA, estimating 80 receptacles for a total of $32,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the wiring devices generally is about 15 more years.
A. Existing Data

1. The fire alarm is an EST3 addressable system. The system is 18 years old and was installed in 2003. End-Point devices such as manual pull stations, smoke detectors, notification devices, heat detectors, duct detectors, etc. were upgraded in 2012. The fire alarm control panel is located in the first-floor electrical room near the Main office.

2. There are pull stations by all exterior doors.

3. There are ceiling mounted horn strobe devices in the corridors and classrooms.

4. The majority of the fire alarm cabling is installed in “free – air”, not in conduit.

5. This is a non-sprinklered building.

6. There are smoke detectors in storage rooms. There are heat detectors in mechanical rooms.

7. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.

B. Observations

1. The fire alarm system is in good working order.

2. Fire alarm system is compliant with current fire alarm codes.

C. Recommendations

1. Consider upgrading to an audio evacuation fire alarm system.

2. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.

3. This building is not sprinklered.
4. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend continuing on this path for all schools in the district.

5. Budget estimate to upgrade to audio evacuation system installation - $165,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the fire alarm system is about 10-15 more years. Owner will be required to continue to make periodic upgrades and code updates to the control system.

CLOCK SYSTEM

A. Existing Data

1. A new Sapling Master Clock Controller was installed in 2017 which is the master for controlling the existing Lathem hard wired synchronized wall clocks. This master is ready for wireless clocks in the future. The clock master controller is located in the main office.

2. There are few Lathem hard-wired analog clocks in the classrooms, corridors, offices, and other public areas. These Lathem clocks are approaching 30 years old.

3. The bell tone is controlled by the master clock controller.

B. Observations

1. The clock system is in adequate working order. Some of the clocks are approaching or have exceeded end of expected life cycle.

2. Additional clocks can be added to the system.

3. The School District has begun to replace clocks.
C. Recommendations

1. Recommend budgeting for wall clock replacement, $150 per clock depending on power option. The master clock is already upgraded. Total budget $21,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the clock system controller is 15-20 more years. Individual clocks are at their end-of-life expectancy.
A. Existing Data

1. There is a Telecor intercom system. The overall system is 33 years old. However, the main CPU and Amplifier were replaced and upgraded in 2017. The amplifier is located in the main office storage room.

2. There are wall mounted intercom phones in the classrooms to allow two-way communications with the front office. The intercom is also accessed through the Mitel 3300 IP phone line which allows users with a code to perform a building page from any Mitel phone.

3. There are surface and recessed wall mounted intercom speakers in the corridors.

4. There are flush wall mounted combination clock speaker baffles in the classrooms.

5. The bell system is toned through the intercom speakers.

B. Observations

1. The intercom system is in adequate working order.

2. Additional intercom speakers can be added.

3. The 33-year-old intercom system has reached its end-of-life expectancy.

C. Recommendations

1. Replace with a new modernized system. Consider a system to integrate with modern technology such as mobile communication, pre-recorded messaging, etc. Budget allowance of $90,000.
D. Expected Remaining Lifespan

2. The expected remaining lifespan of the replaced CPU and Controller is about 10-15 more years. The speakers and wiring have reached end of life expectancy.

PHONE SYSTEM

A. Existing Data

1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015-2016. New IP phones have been installed throughout the school. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the first-floor electrical room near the main office and in the lower-level storage room. There are also voice wiring blocks in each of the 5 data closets.

B. Observations

1. The phone system is in adequate working order.

C. Recommendations

1. Remove all CAT 3 wiring and replace with new CAT 6. Budget $50,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the Mitel 3300 IP phone system is about 7-10 more years.
DATA SYSTEM

A. Existing Data

1. The MDF data rack is located in first floor electrical room near the main office. There is one floor mounted data rack. There are 4 additional IDF data racks located throughout the building. New Cisco Switches for PoE and non-PoE was added in 2017. New Single-Mode Fiber Optic cable was added. The system is capable of transmitting 10 meg of broadband.

2. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

3. The data cable is a combination of CAT5e and CAT6 plenum rated which is routed to patch panels in the data rack.

4. The patch panels in the data rack are a combination of CAT5e and CAT6 Panduit.

5. There is a rack mounted UPS.

6. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of 1 access point per classroom. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

B. Observations

1. The data system is in good working order.

2. Additional horizontal runs of data cable can be added to the existing rack.

C. Recommendations

1. Replace the old existing CAT3 cable with new CAT6 Plus cable. $165/data jack.

2. Provide additional switches, patch panels and equipment racks. Budget a total of $85,000.
D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CAT3 data cabling is about 5 more years.
2. The expected remaining lifespan of the network equipment is about 7-10 more years.

CATV SYSTEM

A. Observations

1. There is a CATV service to this building. CATV splitters are located in storage closets throughout the building. CATV system is no longer in use.
2. There is a CATV jack in each classroom.

B. Recommendations

1. Remove all CATV equipment and jacks.
2. Remove all CATV Coax cable. Budget $7,000.

C. Expected Remaining Lifespan

1. Not applicable

SECURITY SYSTEM

A. Observations

1. There is an Ademco security system. The security control panel is located in the lower-level laundry room.
2. The security system has new motion sensors installed in 2017.

B. Observations

1. There are exterior door contact switches on all exterior doors.
2. Security system is in good working order.
3. Additional security devices can be added.
C. Recommendations
 1. Due to advance age of the system, consideration should be given to replace the security system head-end equipment with a new modernized, programmable, software based, system which could be integrated with CCTV Cameras, Fire Alarm and Electronic Door Access Systems. Budget $15,000.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 7 - 10 more years.

CCTV SYSTEM

A. Existing Data
 1. There is a server-based IP CCTV system used throughout all the buildings in the district.
 2. There are interior and exterior fixed color IP cameras.
 3. Current Network recorder has the capability of recording for 30 days.

B. Observations
 1. The CCTV system is in adequate working order.
 2. Additional cameras should be added for better security coverage

C. Recommendations
 1. Provide additional interior and exterior IP Cameras. $1,200/camera for interior, $2,500/camera for exterior. Estimate 10 exterior cameras and 20 interior cameras for a total of $49,000.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the CCTV system is about 5 - 7 more years.
ACCESS CONTROL SYSTEM

A. Observations
 1. There is an RS2 System door access control system installed for the District in 2015 - 2016.

B. Observations
 1. The access control system is in good working order.
 2. This system is expandable and additional doors can be added to this system.

C. Recommendations
 1. Install electric strikes, key fob readers, request to exit, etc. on additional exterior doors as needed for additional security and building use. $3,500/door for an estimate.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the access control system is about 10-15 more years.
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
ONALASKA HIGH SCHOOL

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-0001</td>
<td>10/10/2013</td>
<td>Roofing Repair</td>
<td>Maintenance</td>
<td>Continuation of roofing repairs, part of PM program Note: Seal parapet at SW entrance arch</td>
<td>$14,000</td>
<td>Annual</td>
<td>1</td>
</tr>
<tr>
<td>HS-0005</td>
<td>11/14/2013</td>
<td>Dance Studio Remodel</td>
<td>Upgrade</td>
<td>Install suspended ceiling, upgrade lighting, room acoustics, replace wall surfacing. Note: This space is not ADA accessible</td>
<td>$68,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0006</td>
<td>10/10/2013</td>
<td>Science Lab Upgrades</td>
<td>Upgrade</td>
<td>Renovate some existing rooms for change of use, provide additional lab Design study will identify potential changes</td>
<td>$200-250k +/-</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0007</td>
<td>10/10/2013</td>
<td>Replace Damaged Wood Doors</td>
<td>Replacement</td>
<td>Replace 50+/- damaged wood interior doors.</td>
<td>$76,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0008</td>
<td>10/10/2013</td>
<td>Re-glaze Fire Doors</td>
<td>Safety Upgrade</td>
<td>Replace wire glass in interior fire-rated door assemblies with fire-rated safety glass.</td>
<td>$106,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0009</td>
<td>10/10/13</td>
<td>Remodel Toilet Rooms</td>
<td>Handicap Accessibility</td>
<td>Remodel main toilet rooms on both levels for current compliance with ADA guidelines. Includes replacement of fixtures.</td>
<td>$276,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0012</td>
<td>10/10/2013</td>
<td>New Football Field /Track Storm Water Collection System</td>
<td>Upgrade</td>
<td>Install new area drains between track surface and football field and interconnect with subgrade drainage system.</td>
<td>$126,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0029</td>
<td>10/10/2013</td>
<td>Storm Water @ Football Field Grandstands</td>
<td>Maintenance</td>
<td>New storm water detention area at south end of grandstands. Replace storm sewer from CB @ south end of grandstands to eastside driveway.</td>
<td>$136,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0030</td>
<td>10/10/13</td>
<td>Replace coiling doors at football field grandstand storage areas.</td>
<td>Replacement</td>
<td>Replace three overhead coiling doors with new sectional overhead doors at west side of grandstands.</td>
<td>$21,800</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0035</td>
<td>10/10/2013</td>
<td>Upgrade lab room sink fixtures.</td>
<td>Code Compliance</td>
<td>Add serrated nipple vacuum breakers at all lab work surface sink faucets. (28 sinks @ $250 ea.) See HS-0006</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HS-0036</td>
<td>10/10/2013</td>
<td>Upgrade natural gas distribution to lab counter turrets.</td>
<td>Safety</td>
<td>Modify existing gas turrets to control with emergency shut-off in appropriate and accessible location within the science lab room.</td>
<td>$6,800</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Project No.</td>
<td>Date Ordered</td>
<td>Date Completion</td>
<td>Description</td>
<td>Method</td>
<td>Cost ($)</td>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--------</td>
<td>----------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>HS-0037</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Emergency Shower Modifications</td>
<td>OSHA requirement</td>
<td>Install mixing valve to provide hot and cold water to the existing emergency shower fixture.</td>
<td>$14,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0040</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Replace worn tru-spun cast-iron piping</td>
<td>Replacement</td>
<td>Replace existing tru-spun cast-iron piping with standard cast iron piping.</td>
<td>$135,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0041</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Replace galvanized water piping</td>
<td>Replacement</td>
<td>The existing water piping is near the end of its life expectancy and will need to be replaced.</td>
<td>$205,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0046</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Add VAV boxes</td>
<td>Proper zone control</td>
<td>Provide additional VAV boxes as needed to classroom spaces that have been partitioned in the past without HVAC revisions. (20 VAV’s @ $5,500 ea.)</td>
<td>$150,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0049</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Add surge protection</td>
<td>Equipment Upgrade</td>
<td>Add surge protection device to main service switchboard.</td>
<td>$4,400</td>
<td>3</td>
</tr>
<tr>
<td>HS-0050</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>1968 Panelboard Replacement</td>
<td>Equipment Upgrade</td>
<td>Replace the 1968 panelboards and feeder with new panelboards.</td>
<td>$189,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0051</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Separate Life Safety Loads</td>
<td>Code Compliance</td>
<td>Provide additional automatic transfer switch to separate life safety loads from non-load safety (equipment) loads on the emergency power distribution system</td>
<td>$33,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0052</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Emergency Lighting Relay Upgrade</td>
<td>Code Compliance</td>
<td>Provide UL 924 listed emergency bypass relays on the emergency generator egress lighting circuits</td>
<td>$11,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0054</td>
<td>10/10/2013</td>
<td>7/12/2021</td>
<td>Classroom Power Upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacles to the classrooms as required. Figure allowance of 80 receptacles</td>
<td>$75,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0059</td>
<td>3/14/2014</td>
<td>7/12/2021</td>
<td>Irrigation system</td>
<td>Operational</td>
<td>Add irrigation system out to practice fields</td>
<td>$30,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0067</td>
<td>3/31/2015</td>
<td>7/12/2021</td>
<td>PAC carpet, wall finishes, and seating</td>
<td>Upgrade</td>
<td>Replace carpet, acoustical wall finishes, and seating in existing PAC</td>
<td>$350,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0073</td>
<td>3/23/2017</td>
<td>7/12/2021</td>
<td>New welding exhaust collection system</td>
<td>Operational</td>
<td>Replace existing exhaust collection system with 5 new hoods, new plasma hood and new collector.</td>
<td>$71,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0074</td>
<td>6/5/2014</td>
<td>7/12/2021</td>
<td>High Jump Reconstruct</td>
<td>Replacement</td>
<td>Reconstruct high jump to add surface material to track area</td>
<td>$72,000</td>
<td>1</td>
</tr>
<tr>
<td>HS-0075</td>
<td>4/3/2017</td>
<td>7/12/2021</td>
<td>New greenhouse</td>
<td>Upgrade</td>
<td>Construct new greenhouse structure connecting to the existing greenhouse.</td>
<td>$405,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0076</td>
<td>4/4/2017</td>
<td>7/12/2021</td>
<td>New High Jump</td>
<td>Upgrade</td>
<td>New high jump equipment</td>
<td>$20,500</td>
<td>2</td>
</tr>
<tr>
<td>HS-0077</td>
<td>2/8/2016</td>
<td>7/12/2021</td>
<td>Add heating coils</td>
<td>Upgrade</td>
<td>Add heating coil to AHU1-3</td>
<td>$59,000</td>
<td>3</td>
</tr>
<tr>
<td>Project ID</td>
<td>Start Date</td>
<td>End Date</td>
<td>Description</td>
<td>Type</td>
<td>Details</td>
<td>Cost</td>
<td>Quantity</td>
</tr>
<tr>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>-------------</td>
<td>------</td>
<td>---------</td>
<td>------</td>
<td>----------</td>
</tr>
<tr>
<td>HS-0078</td>
<td>2/8/2016</td>
<td>7/12/2021</td>
<td>New restroom fixtures</td>
<td>Upgrade</td>
<td>Replace existing Sloan flush valves with Toto flush valves</td>
<td>$120,000</td>
<td>3</td>
</tr>
<tr>
<td>HS-0079</td>
<td>2/8/2018</td>
<td>7/12/2021</td>
<td>Demountable walls, soundproofing at classrooms</td>
<td>Upgrade</td>
<td>Replace existing demountable walls with acoustically constructed walls. Layout to be determined in design study</td>
<td>$240,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0080</td>
<td>2/8/2018</td>
<td>7/12/2021</td>
<td>Exhaust Fans</td>
<td>Maintenance</td>
<td>Replace failing exhaust fans for science areas in Rm 119</td>
<td>$9,500</td>
<td>1</td>
</tr>
<tr>
<td>HS-0081</td>
<td>4/02/2018</td>
<td>7/12/2021</td>
<td>Replace 1960 Switchboard</td>
<td>Equipment Upgrade</td>
<td>Provide a 600 amp., Distribution Panel</td>
<td>$16,500</td>
<td>2</td>
</tr>
<tr>
<td>HS-0082</td>
<td>4/02/2018</td>
<td>7/12/2021</td>
<td>Add additional panels adjacent to 1988 Panels</td>
<td>Equipment Upgrade</td>
<td>Additional (7) panelboards installed adjacent to existing 1988 panelboards to provide additional circuit breakers.</td>
<td>$31,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0084</td>
<td>3/21/2019</td>
<td>7/12/2021</td>
<td>Lighting time clock upgrade</td>
<td>Upgrade/Energy</td>
<td>Replace six stand alone time clocks with one smart unit</td>
<td>$6,500</td>
<td>2</td>
</tr>
<tr>
<td>HS-0086</td>
<td>3/21/2019</td>
<td>7/12/2021</td>
<td>Drinking Fountain Replacement -Exterior</td>
<td>Operational</td>
<td>Replace exterior water fountain with bottle filler and freeze-proof design</td>
<td>$8,800</td>
<td>3</td>
</tr>
<tr>
<td>HS-0087</td>
<td>3/21/2019</td>
<td>7/12/2021</td>
<td>Replace failing boilers</td>
<td>Operational</td>
<td>Replace one of two boilers within 2-3 budget cycles</td>
<td>$120,000</td>
<td>1</td>
</tr>
<tr>
<td>HS-0088</td>
<td>4/1/2019</td>
<td>7/12/2021</td>
<td>Brick tuck-pointing and control joints,</td>
<td>Operational</td>
<td>Multiple areas in need of tuck-pointing, re-caulkling control joints. Seal masonry over SW entrance P arch</td>
<td>$85,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0090</td>
<td>3/31/2020</td>
<td>7/12/2021</td>
<td>Replace carpet</td>
<td>Operational</td>
<td>Phased project to begin replacing carpet in all classrooms</td>
<td>$80,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0092</td>
<td>3/11/2021</td>
<td>7/12/2021</td>
<td>Lighting replacement with LED</td>
<td>Energy/Upgrade</td>
<td>Replace original lighting with LED and supporting controls</td>
<td>$185,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0095</td>
<td>4/02/2018</td>
<td>7/12/2021</td>
<td>Upgrade Fire Alarm System to Voice Evacuation</td>
<td>System Upgrade</td>
<td>Upgrade the existing fire alarm system to Voice Evacuation</td>
<td>$165,000</td>
<td>3</td>
</tr>
</tbody>
</table>

2018 & 2021 ASSESSMENT ITEMS

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Start Date</th>
<th>End Date</th>
<th>Description</th>
<th>Type</th>
<th>Details</th>
<th>Cost</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-0096</td>
<td>4/02/2018</td>
<td>7/12/2021</td>
<td>Replace existing Intercom system with new</td>
<td>System Upgrade</td>
<td>Replace the 30 year old intercom system with new</td>
<td>$90,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0097</td>
<td>4/02/2018</td>
<td></td>
<td>Upgrade Data wiring for phone system</td>
<td>System Upgrade</td>
<td>Replace existing CAT 3 communication wiring with CAT 6 for IP phone system</td>
<td>$50,000</td>
<td>2</td>
</tr>
<tr>
<td>HS-0098</td>
<td>4/02/2018</td>
<td>7/12/2021</td>
<td>Upgrade Data wiring and equipment</td>
<td>System Upgrade</td>
<td>Replace existing CAT 3 Communication wiring with CAT 6 and provide additional switches, IT racks, Patch panels, etc.</td>
<td>$85,000</td>
<td>2</td>
</tr>
<tr>
<td>Project Code</td>
<td>Project Date</td>
<td>Description</td>
<td>Category</td>
<td>Details</td>
<td>Estimated Cost</td>
<td>Priority</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>---------</td>
<td>----------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>HS-0100</td>
<td>7/12/2021</td>
<td>Replace OH Doors at East Elevation</td>
<td>Upgrade/Energy</td>
<td>Replace existing overhead doors at shop areas with energy efficient models</td>
<td>$32,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HS-0101</td>
<td>7/12/2021</td>
<td>Concrete Repairs</td>
<td>Safety</td>
<td>Replace existing concrete walks, approaches, ramps etc. as outlined in study</td>
<td>$34,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>HS-0102</td>
<td>4/02/2018 7/12/2021</td>
<td>Remove existing CATV system</td>
<td>Building improvement</td>
<td>Remove existing Coax cables and CATV equipment and jacks</td>
<td>$7,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HS-0103</td>
<td>7/12/2021</td>
<td>Fencing and landscaping</td>
<td>Maintenance</td>
<td>Misc. fencing repairs and landscaping maintenance items identified in study</td>
<td>$7,800</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HS-0104</td>
<td>7/12/2021</td>
<td>Long jump reconstruction</td>
<td>Replacement</td>
<td>Reconstruct long jump so that pits are longer and increase space between runways</td>
<td>$64,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HS-0105</td>
<td>4/02/2018 7/12/2021</td>
<td>Security System upgrade</td>
<td>Security Upgrade</td>
<td>Provide a new Security System head-end equipment to replace existing.</td>
<td>$35,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>HS-0106</td>
<td>4/02/2018 7/12/2021</td>
<td>Upgrade CCTV System</td>
<td>Technology Upgrade</td>
<td>Provide additional interior and exterior IP cameras</td>
<td>$49,000</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
ONALASKA MIDDLE SCHOOL

711 Quincy Street
Onalaska, WI 54650

BUILDING DATA:

Building Area
- Building 119,050 SF

Building Occupancy Classification
- Educational Group – E

Construction Type
- Type II-B

Fire Protection
- Non-Sprinklered

Construction Projects/Dates
- 1978 Original Construction
- 1999 Central Kitchen Expansion
- 2006 Classroom Remodeling
ARCHITECTURAL

The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on April 26th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The 1978 construction of the new middle school was comprised of steel framed structure of steel columns, wide flanged beams and open web steel bar joists and steel decking.

2. The exterior walls were constructed of light-gauge steel studs clad with exterior gypsum sheathing and textured acrylic stucco.

3. A continuous fascia band of ribbed metal panels was applied to the wall area above the stucco surface.

4. The metal stud wall cavity was insulated with 3-1/2 inch R-11 batt insulation. The interior side of the walls were covered with a base layer of ½” gypsum board and covered with a vinyl covered fiberboard.

B. Observations

1. The exterior stucco wall cladding was cleaned and recoated in 2017.

2. Exterior control joints were re-sealed in 2017.

3. Walls are poorly insulated.

4. Various areas at stucco walls are cracked or damaged.

5. Ground face CMU at commons display moisture damage. Hairline cracks are visible due to lack of expansion joints.

6. Drip flashing at base of walls has deteriorated, rusted or broken off in multiple areas.

7. Ribbed metal panels are in good condition overall but have few areas where panels are detached or coming loose.
C. Recommendations

1. Stucco walls at the transformer should be refinished.
2. Ground face CMU at commons requires tuck pointing and should be resealed to prevent further moisture damage.
3. Ribbed panels should be refastened.
4. Insulation of exterior walls needs to be improved and will be reviewed as part of the middle school design study.

BUILDING ENVELOPE: WINDOWS

A. Existing Data

1. The original windows from the 1978 construction project are still in place and consist of a shallow depth thermally broken aluminum frame with 1 inch insulated glass.
2. The existing aluminum windows are framed within the metal stud exterior walls. The wall area below the windows is clad with ribbed metal fascia panels.
3. Newer thermal pane windows can be found at the commons area, north of the transformer.

B. Observations

1. Windows are aged; finishes are deteriorating and require full replacement.

C. Recommendations

1. Remove and replace existing aluminum windows with new thermally improved aluminum windows with high performance insulated glass. Replace wall section below windows with abuse resistant cladding over additional rigid insulation.
A. Existing Data

1. The main south side entrance is of hollow metal doors and frames. The east side entrance is of standard aluminum entrance doors, fully-glazed.

2. Service doors are hollow metal.

3. ADA door operators were added to the Quincy Street entrance.

B. Observations

1. Aluminum entrances are showing signs of significant wear from heavy usage.

2. Hollow metal doors and frames are poorly insulated and display rust. Doors show significant signs of typical wear and abuse.

C. Recommendations

1. Aluminum entrances can likely remain for the present but should be included on the list for future replacement.

2. In general, hollow metal steel doors and frames can also continue to be used and repaired as necessary. Replacement with new insulated galvanized steel doors and frames should be considered for inclusion on any list for future building upgrades.
A. Existing Data

1. The entire building with the exception of the north half of the Central Kitchen was re-roofed in 2006 which involved replacing the original ballasted single-ply rubber membrane with a new mechanically attached 60-mil rubber membrane over new insulation placed over the existing R-2 perlite insulation. The roof system was specified as to include a 20-year ‘full-system warranty’.

2. The 1999 Central Kitchen Addition consisted of a 60-mil ballasted single-ply rubber membrane over 5 inch EPS insulation.

B. Observations

1. The 2006 re-roofing appears in satisfactory condition.

2. The ballasted roof system above the 1999 Central Kitchen addition also appears in satisfactory condition with no significant signs of deterioration.

C. Recommendations

1. If the decision is made to replace the aluminum framed clerestory windows in the sloped shed roof areas, it is recommended that the sill conditions be raised and re-flashed per current recommendations of the roof membrane manufacturer.
A. **Existing Data**

1. Hose bibs are original.
2. Downspouts are original.
3. Entry soffits are textured stucco.

B. **Observations**

1. Hose bibs are protruding out from exterior walls and appear to be sealed with spray foam.
2. Multiple downspouts do not direct drainage away from the building.
3. Entry soffits appear to be in satisfactory condition.

C. **Recommendations**

1. Hose bibs should be routinely monitored for proper sealant at the perimeter.
2. Downspout drainage should be redirected to prevent water damage at building perimeter.

BUILDING INTERIOR: FLOORING

A. **Existing Data**

1. The middle school includes multiple flooring materials including the following:
 a. Vinyl composition tile (VCT)
 b. Carpet
 c. Ceramic Tile
 d. Wood parquet (gym flooring)
 e. Sealed concrete
2. Carpeting is used throughout corridors, most classrooms and the main office. Corridors and main office areas were re-carpeted in 2015.
B. Observations
1. Overall, flooring is outdated and worn in various areas.
2. VCT flooring in the commons displays cracks along windows most likely from building settlement over time. This can also be seen in other areas of the school.
3. VCT flooring in multipurpose room does not meet the needs of programs.
4. Parquet flooring at door thresholds damaged.
5. Recently replaced carpet is in good condition.

C. Recommendations
1. Flooring needs to be updated throughout the building and will be reviewed as part of the middle school design study.
2. Flooring may be replaced as needed through an ongoing district maintenance project.

BUILDING INTERIOR: WALLS

A. Existing Data
1. Interior partitions bordering corridors consist of metal studs with gypsum board and thin coat plaster.
2. Classroom partitions are of metal stud, gypsum board and vinyl faced fiberboard.
3. Multiple classrooms contain folding panel partitions between rooms.
4. Hallways were repainted in 2015.

B. Observations
1. Wall surfaces are generally in good shape. Some corners are damaged from high circulation traffic and could be protected with corner guards.

C. Recommendations
1. None at this time
BUILDING INTERIOR: DOORS & FRAMES

A. Existing Data
 1. Interior doors are solid core oak veneer wood doors in hollow metal frames.
 2. Fire rated doors include wire glass lites.

B. Observations
 1. Wood doors exhibit normal deterioration from the years of service.

C. Recommendations
 1. Wood doors can continue to be used and replaced on a case by case basis.
 2. Hollow metal door frames should be repaired and repainted.
 3. Wire glass should be removed and replaced with new fire-rated safety glass.
 4. Continue to replace latch set hardware with new lever handled hardware.

BUILDING INTERIOR: TOILET PARTITIONS

A. Existing Data
 1. Toilet partitions include both metal and solid plastic.

B. Observations
 1. Metal toilet stall partitions (locker rooms only) show typical damage and deterioration from heavy use and abuse.
 2. Partitions damaged by rust, abuse, and vandalism have been replaced throughout the facility.

C. Recommendations
 1. Partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.
A. Existing Data

1. The original lab work counters are still in place and consists of epoxy resin countertops on a steel framed support system.

2. Sliding wood panel fronts were added as a means to close off the under counter space and to conceal storage of boxed science kits.

3. The epoxy resin counters include a continuous shallow depth drainage trough that slopes to a single drain at the end of the sections of countertops. Gooseneck water faucets are positioned above the drainage trough but splashes water on countertop surfaces outside of the trough (poor design).

4. The science instructors also noted that exhaust ventilation is ineffective and needs to be rebalanced.

B. Observations

1. The work surfaces are worn and show the signs of 30+ years of use.

2. The existing deck mounted gas turrets are not used and could be removed. The work surfaces also include pedestal type electrical receptacles; however, the lecture area of the classroom is noticeable short of wall receptacles requiring suspended extension cords.

3. Laundry tub sinks are used in some classrooms where gooseneck faucets have been removed.

4. Sound transmission from the adjacent music rooms remains problematic. The corridor between the science rooms and the band / vocal rooms are used as instrumental practice areas.
C. Recommendations

1. Replace lab work surfaces and steel framed understructure with new wood laboratory cabinets and epoxy resin tops with integral epoxy resin sinks.

2. Replace fume hood with new two-sided demonstration hood that would permit student access from the classroom side while allowing the instructor to work from the prep room side.

3. Provide in each of the science labs, handicap accessible work surface section with open knee space below to permit access to lab fixtures and sinks for wheelchair bound students.

4. Refinish base and wall cabinets in prep room with new cabinet hardware.

BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data

1. The majority of the rooms have suspended acoustical tile.

2. Locker rooms have plastered ceilings and the LMC is partially finished with stained wood paneled sloped ceilings.

3. The gym has tectum ceiling panels.

4. Plastic laminate casework and counter tops are typical throughout the building.

5. Desks are a combination of solid plastic and wood.

B. Observations

1. Ceiling tile and grid in the science labs are stained and corroded.

2. Ceilings in all classrooms are 2x4 and show extreme deterioration and sagging.

3. Plastic laminate casework and counter tops are outdated and worn in various areas.
C. Recommendations

1. Replace worn areas of acoustical ceiling tile and vinyl faced ceiling panels (toilet rooms).
2. Replace all 2x4 tiles with 2x2 tiles in all areas.
3. General finishes will be reviewed as part of the middle school design study.
4. The district may replace finishes as needed as part of a district maintenance project.

Typical classroom finishes

BUILDING SPACES: MAIN OFFICE / STUDENT SERVICES / HEALTH (NURSE)

A. Existing Data

1. All office and student services are centrally located within the building. Some student services are located within the library space adjacent to the main office.

B. Observations

1. Central location of the main office does not provide a secure entry to the building. A separate staff sits in front of the LMC to check in and direct visitors. The check in desk is open to the entire school.
2. General office lacks offices needed for additional staff.
3. Location of student services and health does not provide adequate confidentiality of students and parents.
4. All areas are in need of additional supporting spaces such as storage and meeting spaces.
5. All spaces are poorly insulated for sound control (privacy) between rooms.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the middle school.
A. Existing Data

1. Band, general music and choir are located adjacent to each other in the NW corner of the school. Practice rooms and instrument storage supplement these spaces.

2. Orchestra is located adjacent to Art and separated from Band and Choir.

3. Band currently has 300 students total (100-120 per grade level).

4. Orchestra currently has 100 students total (30-40 per grade level).

5. Choir currently has 400-450 students total (150-170 per grade level).

B. Observations

1. Students attend band, choir and orchestra every day. Multiple students participate in all 3 classes.

2. Classrooms are undersized for the amount of students in each program.

3. Spaces are inadequate for storage of general items and instruments for band and orchestra. Practice rooms have either been converted to instrument storage or have been filled for storage.

4. The perimeter of the band and orchestra room is utilized for instruments or storage of chairs/stands.

5. Classrooms do not have appropriate acoustical treatment or height to accommodate proper sound distribution.

6. Classrooms do not have adequate rehearsal spaces, ensemble rooms or recording rooms for students.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the middle school.
A. Existing Data

1. Gym is located on the north end of the building with the multipurpose room adjacent. Locker rooms and fitness room are located adjacent to the gym.

B. Observations

1. Gym is undersized for the number of students and classes taking place.
2. Bleachers are undersized for the entire student body and for all events to take place at the middle school.
3. Gym flooring and bleachers are outdated.
4. Multipurpose room flooring is inadequate for P.E. classes.
5. General storage is lacking for equipment. Exterior storage is currently used for additional storage.
6. Fitness room is undersized for program.
7. Adaptive P.E. does not have an assigned space for the program.
8. Locker room toilet rooms are non-ADA compliant. Private changing rooms are not provided.
9. Lockers and general finishes are outdated in all room types.

2. Group showers have been transitioned to storage rooms for equipment. Students use the individual shower provided in each of the staff offices.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the middle school.
BUILDING SPACES: TECH ED

A. Existing Data
1. Tech Ed is a large room with a supplemental power tool room inside. Classroom is located adjacent to the gym.
2. There are 23-27 students per class with 2 sections per grade level each day. Tech Ed is a quarterly assigned program.

B. Observations
1. Classroom is undersized for the program and lacks general storage.
2. Finishes are aged and general areas are outdated.
3. Teaching space and working space is combined which results in poor sound control.
4. General equipment is outdated and doesn’t fully meet the needs of the program.

C. Recommendations
1. Space needs to be evaluated based on current and projected programmatic uses.
2. Shortcomings of this area will be reviewed with the overall design study for the middle school.

BUILDING SPACES: SCIENCE

A. Existing Data
1. 7th and 8th grade science classrooms are located adjacent to each other. 6th grade science classrooms are located on the opposite side of the building.
2. 7th and 8th grade classrooms share storage rooms.
3. Current classes are 25 - 30 students.
B. Observations

1. 6th grade classrooms are not set up as traditional science rooms such as 7th and 8th grade classrooms. Both 6th grade classrooms are not identical.

2. 7th and 8th grade classrooms are divided in half, fixed lab stations and a teaching space. Flexibility of teaching space is limited. Classroom is not fully utilized throughout the year.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the middle school.

SUPPORT BUILDINGS: MIDDLE SCHOOL GARAGE

A. Existing Data

1. A 30’ x 24’ wood framed storage garage is located on the north side of the school and utilized for miscellaneous equipment.

2. The structure consists of a wood stud frames walls on a concrete floor slab, prefabricated wood trusses, vinyl lap siding and asphalt shingled roof.

3. There are three pairs of hollow metal doors on the south side and a single pair on the north wall.

B. Observations

1. In general, the garage structure appears to be in satisfactory condition.

2. Vinyl siding is aged with multiple damaged areas.

3. The asphalt shingles should provide several more years before it becomes necessary to replace the shingles.

4. Doors are rusted and deteriorating.

C. Recommendations

1. The hollow metal doors should be scheduled for refinishing or replaced.
HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
 1. The Wisconsin Commercial Building Code defines an “accessible route” as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site amenities such as staff parking lots and bus loop driveways. The Middle School site currently provides accessible routes from the south side bus drop-off area, and main building entrance on the east end.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. Where parking is provided, accessible parking spaces shall be provided as follows:
 a. Total Parking Spaces Provided: 79
 b. Required Number of Accessible Spaces: 4

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. Door operators have been provided at southside Entrance ‘A’, Entrance ‘C’ on the East end.

B. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations

1. With the exception of the upper level Boiler Room, all rooms are located on one level.
2. All classrooms, corridors and auxiliary spaces were designed for compliance with ADA guidelines for interior circulation.

B. Recommendations

1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data

1. The 2006 classroom remodeling project included the remodeling of existing boys’ and girls’ toilet rooms located in the southeast corner of the building to meet ADA requirements.
3. All other toilet room facilities do not comply with the ADA requirements for accessible toilet facilities, including the toilet rooms located in the locker rooms.

B. Observations

1. Toilet rooms are not completely compliant with current ADA guidelines.
2. Grab bars and size of stalls do not meet current ADA guidelines.
3. Lavatories do not have proper covers or insulation over exposed pipes.

C. Recommendations

1. In general, toilet rooms will be reviewed with the overall design study for the middle school to see where renovations are applicable.
HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data
 1. Building has ADA compliant signage throughout the school

B. Observations
 1. None at this time

C. Recommendations
 1. None at this time
ONALASKA MIDDLE SCHOOL - BUILDING ADDITION KEY PLAN

1978 FIRE RECONSTRUCTION

1999 KITCHEN ADDITION

ORIGINAL CENTRAL KITCHEN

MIDDLE SCHOOL PLAN

North
SITE

The following report is the result of a site visit by Jeff Moorhouse, Paragon Associates, that occurred on 6-20-21. Site observations were used in the preparation of this report.

OVERVIEW

Onalaska Middle School is a single-story building with paved sidewalks, parking, drop-off areas, a small detached maintenance building, paved play areas and athletic fields. The school district’s Central Kitchen is also part of the Middle School, and is included in this section of the site assessment.

SIDEWALKS

A. Existing Data
 1. The middle school property is surrounded by public sidewalks on Quincy, 8th Avenue North, and Redwood Streets. There is a portion of Oak Avenue with sidewalk on the north side of the site.
 2. There are internal sidewalks connecting parking, drop-off areas and public sidewalks to the building.

B. Observations
 1. In general, the sidewalks are in good condition.

C. Recommendations
 1. Continue to monitor and note any cracked or lifted sidewalks.
PARKING

A. **Existing Data**

1. The parking areas in general consist of asphalt paving, with some areas of concrete curb and gutter.
2. The main parking area is east of the building and is also used as parent drop-off/pick-up.
3. There is a small parking area east of the Central Kitchens addition.
4. The paving on the south side of the building is for bus drop-off/pick-up and two handicap accessible parking spaces.

B. **Observations**

1. The asphalt paving and curb and gutter are still in good condition.

C. **Recommendations**

1. Continue to monitor conditions of paving and make any needed corrections.

PLAYGROUNDS

A. **Existing Data**

1. Playgrounds include paved asphalt areas along the west side of the building, used for four square and basketball (including hoops), as well as unpainted areas for free-play.
2. Paved playground areas are used as overflow parking during large, evening school events.

B. **Observations**

1. In general, the playground paving and components are in good condition.
C. Recommendations
 1. Continue to monitor conditions of paving and make any needed corrections.
 2. Continue to inspect basketball hoops annually for broken or worn equipment. Repair, replace or remove equipment that is unsafe.

FIELDS

A. Existing Data
 1. Fields consist of two softball/baseball fields, with backstops, along the north side of the property. The eastern ball field has bleacher seating.
 2. The softball outfields provide areas for football, soccer, etc.
 3. The ball fields are surrounded on three sides by chain link fencing.

B. Observations
 1. The ball field backstops and fencing appear to be in good condition.

C. Recommendations
 1. Continue to inspect backstops and fencing and repair/replace anything broken or unsafe.

LANDSCAPING

A. Existing Data
 1. Landscaping consists of street trees, shade and evergreen trees in lawn areas, and very limited foundation plantings.

B. Observations
 1. Landscaping in general appears to be in good condition.
 2. There is a spruce tree with multiple dead branches (map grid E8).
C. Recommendations
 1. Remove dead branches on spruce tree.
 2. Continue to monitor landscaping and remove dead or diseased branches or plants/trees.

UTILITIES

A. Existing Data
 1. Site utilities include water service and sanitary and storm sewer.

B. Observations
 1. Utility structures that could be observed appeared to be in good working order.

C. Recommendations
 1. Continue to monitor utilities and make any needed corrections.
PLUMBING

The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data

1. Water heating equipment is sealed combustion gas fired instantaneous water heating equipment. 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The building is served by a single Hillenbrand water softener in the 2014 addition. The water softener is softening domestic HW only.

3. Plumbing fixtures are in good operational condition. WCs are wall hung flush valve are a mix of sensor operated and manual, URs are floor mount with sensor and manual flush valves, Lavatories have manual faucets.

4. Domestic Water service is 4” with a 3” meter and 3” CW supply piping.

5. Water pressure is over 80 PSI, there is a pressure reducing valve set at 65PSI.

6. There is an irrigation meter/backflow preventer for irrigation to the athletic fields.

7. Water piping in building is a mix of copper, galvanized steel and CPVC piping. Most galvanized piping has been replaced with CPVC piping.

8. There is a deduct water meter and backflow preventer for CW supply HVAC chillers.
B. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The sanitary, storm and water piping systems are functioning properly.

3. Water piping system is functioning properly, Valves will need to be replaced as system ages.

4. Water service would not be large enough for a fire protection system.

5. There is a single water softener, it is for Domestic HW only.

C. Recommendations

1. Galvanized water piping should be scheduled for replacement, original valves should also be replaced.

2. Entire building should be on softened water.

3. Other Equipment will require an annual review of condition and minor on-going maintenance as needed.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 15 years.

2. Water softening equipment should be viable for another 10 years.

3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair/replacements required due to usage.

4. Plumbing fixtures/faucets/flush valves will require on going minor maintenance/replacement as needed.

5. Water piping system should have a 5yr useable life, valves may require replacement as they age.

E. Specific Areas of Concern - N.A.
A. **Existing Data**

1. The building heating system is a hot water system that consists of one (1) Lochinvar condensing boiler with a 96.2% efficiency rating and a 25:1 turn down ratio for higher efficiencies. The pumping system is a primary-secondary arrangement with constant flow system pumps. Each boiler is served by an inline primary pump while main and stand-by pumps are piped in parallel in the secondary loop.

2. The building cooling system is a central chilled water system that consists of a 120 ton Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-only arrangement with two constant flow pumps piped in parallel.

3. The building is served by constant volume air handling units and air handling units with hot water VAV and booster coil reheat control. The air handling units have been replaced in recent years with newer modular Trane equipment, but the distribution ductwork and zoning were not replaced at that time.

4. The main data server room is served by a computer room air conditioning unit with standalone control.
5. The kitchen is served by two (2) packaged rooftop heating and cooling units with standalone electronic programmable thermostats. One of the four large kitchen exhaust hoods is served by a gas-fired makeup air unit.

6. The building is controlled by a Trane direct digital control system and Schneider Electric Controls.

7. Bipolar ionization air purification systems were recently installed within all air handling equipment.

B. Observations

1. The boiler is in good condition and, with a proper maintenance program, should continue to serve the building for another 15-20 years.

2. The Taco hot water system pumps have experienced problems with leaking seals. The seals have been replaced previously and are leaking again.

3. The Owner reported that the gymnasium has had difficulty delivering proper airflow even after having the heating and cooling coils cleaned. Both the gym and commons areas have difficulty reaching setpoint on hot/humid days when the spaces are occupied.

4. The Owner also reported that the kitchen experiences pressure issues when the exhaust hoods are in operation. This is likely due to a lack of makeup air.

5. There have been numerous complaints of systems not maintaining proper temperatures throughout the building in both summer and winter. Air distribution and zoning appear to be a significant problem.
C. Recommendations

1. The hot water and chilled water systems serving the building are overall in good operating condition. However, the constant flow pumping systems serving the hot water and chilled water systems are inefficient from an energy standpoint. Revise the hot water system to a primary-secondary variable flow pumping system by utilizing variable frequency drives and pressure reset control sequences to optimize operation and more closely match the actual building loads. Revise the chilled water system to a variable primary flow system with a similar approach. At that time, the existing Taco hot water system pumps should be replaced.

2. Install a 2nd boiler to match the existing as there is no redundancy built in as of today. If there is remodel in the near future, then hold off until that is determined.

3. Revise/replace the existing ductwork distribution and zoning to properly serve the building layout that is now in place since revisions have taken place over the years. Replace all constant volume booster coil reheat systems with hot water VAV systems to improve energy efficiency and zone control.

4. Replace the existing air handling systems that are currently serving the gymnasium and the commons with new equipment that is sized to adequately handle the space loads.

5. Continue to maintain the existing Trane and Schneider Electric digital control system. We recommend eventually replacing the remaining Trane system with Schneider Electric/Tridium Niagara system to match the rest of the school district.
ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group, LLC that occurred on June 23, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

MAIN ELECTRICAL SERVICE

A. Existing Data

1. This school has a 2,500 amp 480 volt 3-phase 3-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT’s cabinet is pad mounted outside next to the utility transformer. The meter socket is mounted inside next to the main switchboard. The main service switchboard consists of two 2,500 amp circuit breaker distribution sections and one 2,500 amp fused switch distribution section. This switchboard has 6 main disconnects including 4 fused switches and two fused bolted pressure switches. This service equipment was installed in 1978. The switchboard is a Square D. There are 6 spare circuit breaker spaces in the switchboard.

2. The central kitchen has a 600 amp 480Y/277 volt 3-phase 4-wire service. The service is fed from a utility owned pad mounted transformer. The CT’s are integral to the main switchboard. The meter socket is mounted inside next to the main switchboard. The switchboard has a 600 amp main circuit breaker. There are no available spaces left in this switchboard for additional circuit breakers.

B. Observations

1. The main service switchboard does not have a surge protection device.

C. Recommendations

1. Provide surge protection device on main service. $4,500.
D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the main service switchboard is about 10 - 15 more years.

PANELBOARDS

A. Existing Data
 1. The panelboards are Square D.
 2. The panelboards were installed in 1978.

B. Observations
 1. The panelboards are generally not full and have on average a few spaces for additional circuit breakers.

C. Recommendations
 1. None.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the panelboards is about 10 - 15 more years.
A. Existing Data

1. The classrooms have 2x4 acrylic lens 2-lamp fixtures that are 9 years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and one low voltage momentary contact switch controlling a lighting control relay panel. The light fixtures are on 8’ X 8’ centers.

2. The corridors have 2x4 acrylic lens 2-lamp fixtures that are nine years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors to control the lights. There are 24/7 night light fixtures. The fixtures are spaced 12’ on center.

3. Exterior perimeter light fixtures and parking lot lights have been upgraded to LED.

4. One hallway has battery powered emergency lights.

5. For Specialized Instruction areas such as; Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.50/sq.ft.

B. Observations

1. There is no automatic control for the parking lot lighting.

2. There is no emergency lighting in the corridors with the exception of one corridor.
C. Recommendations

1. Provide timeclock to control the parking lot lighting. $2,200

2. Add emergency relays to existing light fixtures in corridor to provide code required emergency lighting. $400/fixture

3. Fluorescent lighting is becoming obsolete and is not energy efficient compared to LED. It is recommended that the Onalaska School District shall budget to convert all their schools to energy efficient LED lighting with New Digital Programmable Lighting Controls to conserve energy. Budget shall be $4.50/Square foot of the school building, for a total of $535,662.

4. Replace existing fluorescent lighting fixtures upon failure with new LED fixtures until total conversion is complete. Budget $350/fixture for material and labor.

5. For Specialized Instruction areas such as; Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.50/sq.ft.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the interior light fixtures is about 10-12 more years.
A. Existing Data
 1. The receptacles and toggle switches are commercial grade 15A with stainless steel plates.

B. Observations
 1. Switches and receptacles are in good working order.
 2. Many receptacle circuits are shared between two classrooms which can lead to the circuit becoming overloaded. It was noted that especially the Science Rooms need additional branch-circuits.

C. Recommendations
 1. Replace any broken switches and receptacles. $35 EA
 2. Add additional branch-circuits and receptacles to classrooms as required. $420 EA
 3. Recommend a minimum of one branch-circuit per classroom.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the wiring devices generally is about 12 - 15 more years.
FIRE ALARM SYSTEM

A. Existing Data

1. The fire alarm is an EST 3 addressable system. The system was recently upgraded. The fire alarm control panel is located in the east mechanical room.

2. There are pull stations by all exterior doors.

3. There are wall mounted horn strobe devices in the corridors and classrooms. Many of these old devices were reused when the system was upgraded. New EST devices have been added where required by code.

4. There are smoke detectors in the corridors and storage rooms. There are heat detectors in mechanical rooms.

5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.

6. All fire alarm cabling is installed in conduit.

B. Observations

1. The oldest notification appliances (horn/strobes) are obsolete and have reached their end of life cycle and need to be updated.

C. Recommendations

1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.

2. This building is not sprinklered.

3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
4. Budget estimate to upgrade to audio evacuation system installation - $93,500.

D. Expected Remaining Lifespan

1. The majority of the system has reached its expected life expectancy.

CLOCK SYSTEM

A. Existing Data

1. A new Sapling Master Clock Controller was installed in 2017 which is the master for controlling the existing Lathem hard wired synchronized wall clocks. This master is ready for wireless clocks in the future.

2. Existing Lathem Clocks were updated to Sapling clocks in the classrooms, offices, and other public areas.

3. The bell tone is controlled by the master clock controller.

B. Observations

1. The Clock system is in good working condition.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The master controller and Clocks will last 10-15 years with periodic hardware and software updates as required.
A. Existing Data

1. There is a Telecor intercom system. This system is 15 years old and was installed in 2006. The amplifier is located in the IMC storage room.

2. The intercom is accessed through the intercom phones in the classrooms. The intercom is also accessed through the Mitel IP phone line which allows users with a code to perform a building page from any Mitel phone.

3. There are recessed ceiling mounted intercom speakers in the classrooms and corridors. There are recessed speakers in the exterior soffits near all doors.

4. The bell system is toned through the intercom speakers.

B. Observations

1. The intercom system is in adequate working order.

2. Additional intercom speakers can be added.

C. Recommendations

1. None.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the replaced CPU and Controller is about 10 – 12 more years.
PHONE SYSTEM

A. Existing Data

1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed through-out the school.

2. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the east janitor room, laundry room, and MDF data closet.

A. Observations

1. Additional phones can be added to the system.

B. Recommendations

1. Replace all existing CAT3 wiring and jacks with CAT6 plus. Budget $30,000.

C. Expected Remaining Lifespan

1. The expected remaining lifespan of the Mitel 3300 IP phone system is about 7 - 10 more years.

DATA SYSTEM

A. Existing Data

1. The MDF data rack is located in main IT room. There is one floor mounted data rack. There is one additional IDF data rack located in the IMC A/V storage room.

2. The IDF data racks are connected to the MDF data rack with multi-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

3. The newest data cable is CAT6, the older cable is CAT5 plenum rated which is routed to patch panels in the data rack.
4. There is a rack mounted UPS.

5. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of approximately 1 access point per 2-classrooms. The Computer Network wireless access system is inadequate for today’s needs and for anticipated future needs.

B. Observations

1. The CAT6 data cabling system is in good working order.

2. The CAT5 data cabling system is not working properly and causing errors with the new network equipment.

3. Additional horizontal runs of data cable can be added to the existing rack.

C. Recommendations

1. Replace the old existing CAT3 and CAT5 cable, jacks and patch panels with new CAT6 plus, add additional equipment racks, patch panels and switches. Budget $82,000

2. Install additional Wireless Access Points as required. Budget $1,000/Each

3. Provide Single-mode fiber optic cable between MDF closet and IDF closets. Budget $6,000 per closet.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CAT6 data cabling is about 12-15 more years.

2. The expected remaining lifespan of the CAT5 data cabling is about 0-5 more years.

3. The expected remaining lifespan of the network equipment is about 7-10 more years.
CATV SYSTEM

A. Existing Data
 1. There is a CATV service to this building. CATV splitters are located in the east janitor’s closet and the laundry room.
 2. There is a CATV jack in each classroom.
 3. CATV system is no longer in use.

B. Observations
 1. Several CATV jacks are not active.

C. Recommendations
 1. Remove all CATV equipment, jacks and wiring. Budget $7,000

D. Expected Remaining Lifespan
 1. Not Applicable

SECURITY SYSTEM

A. Existing Data
 1. There is an older Ademco security system. The security control panel is located in the main electrical room.
 2. The security system has motion sensors in the corridors and contact switches on all exterior doors.

B. Observations
 1. Security system is in adequate working order.
 2. Additional security devices can be added.

C. Recommendations
 1. Upgrade system head-end equipment and devices.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 2 - 5 more years.
CCTV SYSTEM

A. Existing Data

1. There is a server based IP CCTV system used throughout all the buildings in the district.
2. There are interior and exterior fixed color IP cameras.
3. Current Network recorder has the capability of recording for 30 days.

B. Observations

1. The CCTV system is in adequate working order.
2. Additional cameras should be added for better security coverage.

C. Recommendations

1. Provide additional interior and exterior IP Cameras. $1,500/camera for interior, $2,750/camera for exterior. Estimate 10 exterior cameras and 20 interior cameras for a total of $57,500.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CCTV system is about 5 - 7 more years.

ACCESS CONTROL SYSTEM

A. Existing Data

1. There is an RS2 System door access control system installed for the District in 2015 - 2016.

B. Observations

1. The access control system is in good working order.
2. This system is expandable and additional doors can be added to this system. The system was updated in the last 3- years.
C. Recommendations

1. Install electric strikes, key fob readers, door contacts, etc on additional exterior doors as needed for additional security and building use. Budget $3,500/door.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the access control system is about 12-15 more years.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-0001</td>
<td>9/19/2013 7/12/2021</td>
<td>Re-glazing Clerestory Windows</td>
<td>Maintenance</td>
<td>Remove and re-glaze insulated glass in clerestory windows above library.</td>
<td>$81,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0002</td>
<td>9/19/2013 7/12/2021</td>
<td>Window Replacement</td>
<td>Energy Conversation</td>
<td>Remove and replace existing aluminum slider windows with new thermally efficient aluminum windows and insulated glass.</td>
<td>$54,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0004</td>
<td>9/19/2013 7/12/2021</td>
<td>Acoustical Ceiling Tile Replacement</td>
<td>Scheduled Replacement</td>
<td>Replace areas suspended acoustical tile</td>
<td>$79,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0006</td>
<td>9/19/2013 7/12/2021</td>
<td>Re-glaze Fire Doors</td>
<td>Code Compliance</td>
<td>Replace wire glass in fire-rated door assemblies with current Code compliant fire-rated safety glass.</td>
<td>$8,400</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0007</td>
<td>9/19/2013 7/12/2021</td>
<td>Science Lab Equipment</td>
<td>Equipment Replacement</td>
<td>Replace laboratory island cabinets, work surfaces, fixtures and demonstration fume hood, create 6th grade rooms</td>
<td>$325,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0011</td>
<td>10/10/2013</td>
<td>Replace Broken Curb</td>
<td>Safety</td>
<td>Replace 10’ section broken curb. Site Grid Location B5</td>
<td>$800</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MS-0013</td>
<td>10/10/2013</td>
<td>Water Heater Modifications</td>
<td>Maintenance</td>
<td>‘New’ water heater accommodates entire building demand. Relocate existing water heater next to water meter to eliminate the small water softener in the kitchen.</td>
<td>$15,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0017</td>
<td>10/10/2013 7/12/2021</td>
<td>Variable flow pumping (hot water system)</td>
<td>Energy Efficiency/Control</td>
<td>Revise the current constant flow pumping system to variable flow by replacing pump motors with inverter duty motors and installing variable frequency drives w/ different pressure control.</td>
<td>$100,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0018</td>
<td>10/10/2013 7/12/2021</td>
<td>Variable Flow Pumping (chilled water system)</td>
<td>Energy Efficiency/Control</td>
<td>Revise the current constant flow pumping system to variable flow by replacing pump motors with inverter duty motors and installing variable frequency drives w/ differential pressure control.</td>
<td>$80,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0019</td>
<td>10/10/2013 7/12/2021</td>
<td>Remodel Duct Systems</td>
<td>Energy Efficiency/Control</td>
<td>Revise and/or replace the existing ductwork distribution systems to properly zone all areas of the building. Replace all booster coil reheat system with VAV systems.</td>
<td>$1,485,000</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
ONALASKA MIDDLE SCHOOL

MS-0020	10/10/2013 7/12/2021	Gym & Commons AHU System Replacement	Capacity and Control	Replace the existing air handling systems serving the gymnasium and commons areas to provide adequate heating and cooling capacity and control.	$300,000	2
MS-0021	10/10/2013 7/12/2021	Add Surge Protection Equipment Upgrade	Add surge protection device to main service switchboard	$4,500	3	
MS-0026	10/10/2013 7/12/2021	Classroom Power Upgrade System Upgrade	Add additional circuits and receptacle.	$26,000	3	
MS-0037	3/21/2019 7/12/2021	Install backup boiler Operational	Replace inoperative backup boiler	$98,000	1	

2018 AND 2021 ASSESSMENT ITEMS

MS-0031	4/24/2014 7/12/2021	Security System Upgrade	Security Upgrade	Upgrade existing security system with new high-end equipment, wiring, and devices as required.	$35,000	2
MS-0035	3/15/2018 7.12.2021	Provide LED lighting and new digital programmable controls throughout the school	Energy Conservation	Replace all existing fluorescent lighting fixtures with new LED throughout the school. Provide new computer network programmable digital lighting controls	$535,000	2
MS-0036	3/15/2018 7.12.2021	Tunable LED lighting fixtures	Technology Upgrade	Provide tunable LED lighting in special Ed and similar rooms	$28,400 ($4.00/sf.)	2
MS-0037	3/15/2018 7.12.2021	Upgrade to Voice Evac Fire Alarm System	Technology Upgrade	Replace existing fire alarm system with a new Voice Evac System	$93,500	3
MS-0038	3/25/2014 7/12/2021	Data Cable Replacement	Technology Upgrade	Replace existing CAT3 phone cable and jacks with new CAT6 data cable and jacks. Replace existing CAT5 data cable and jacks with CAT6. Remove existing CATV wiring and Jacks	$112,000	2
MS-0040	11/21/2013 7/12/2021	Replace CCTV System	Security Upgrade	Install additional IP CCTV system cameras to improve school Security camera coverage.	$57,500	2
MS-0041	11/21/2013 7/12/2021	Door Access Control	Security Upgrade	Add electric door strikes with key fob readers on additional exterior doors.	$3,500	3
MS-0042	7/12/2021	Remove CATV System	Technology Upgrade	Remove existing CATV system that is no longer in use	$7,000	1
MS-0043	3/8/2018 7/12/2021	Provide soft water for entire building	Maintenance	Relocate water softeners to water service entrance	$35,400	2
MS-0045	3/8/2018 7/12/2021	Water Piping Replacement	Replacement	Continue to replace remaining worn domestic water piping (copper, galvanized, PEX) with new copper tubing or Schedule 80 CPVC.	$70,800	2
MS-0046	7/12/2021	Exterior walls, metal fascia panels, and masonry walls	Maintenance	Repair exterior walls, refasten metal fascia panels, tuck point masonry walls	$30,000	2
MS-0047	7/12/2021	Interior Renovations	Design inefficiencies	Replace/add casework, replace science casework, renovate art room, renovate locker rooms, toilet rooms, relocate admin offices, replace flooring, and other design problems.	$-TBD	1
EAGLE BLUFF ELEMENTARY

200 Eagle Bluff Ct
Onalaska, WI 54650

BUILDING DATA:

<table>
<thead>
<tr>
<th>Building Area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Floor</td>
<td>68,240 SF</td>
</tr>
<tr>
<td>Second Floor</td>
<td>50,567 SF</td>
</tr>
<tr>
<td>Total</td>
<td>118,807 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification
Educational Group – E

Construction Type
Type II-B

Fire Protection
Non-Sprinklered

Construction Projects/Dates
1999 Original Construction
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on May 20th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The exterior walls were constructed of masonry bearing walls comprised of utility size face brick over concrete block. The exterior masonry walls were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and an 8” concrete block backer. Window openings were constructed with precast colored concrete sills.

B. Observations

1. The exterior face brick remains in very good condition with limited areas that should be cleaned of stains.

2. Caulked exterior brick expansion joints are also in good condition with a few exceptions.

3. Brick at partial high walls near the main entrance and dumpster enclosure show areas of moisture damage and several cracks. Stone caps have shifted in place.

4. The colored precast concrete sills have weathered and faded from exposure to UV.

5. Membrane flashing at base of walls is beginning to deteriorate.

6. Lintels above doors show signs of wear.

C. Recommendations

1. Remove and clean brick surfaces where efflorescence occurs or where splattered dirt has collected on brick wall surfaces (limited locations).
2. Brick partial high walls should be considered for future replacement. Soft joints shall be provided at stone caps. Ongoing repairs may be considered as part of a district maintenance project in lieu of replacement.

3. The colored precast concrete sills shall be monitored for maintenance and could be cleaned from stains. Sills may be re-sealed with prefinished metal flashing as part of a district maintenance project. Priority is not high at this time.

4. Door lintels may be repainted and monitored for maintenance.

BUILDING ENVELOPE: WINDOWS

A. Existing Data
 1. Windows include a combination of heavy-duty aluminum projected type operable windows and fixed glass aluminum storefront framed glazing. All glazing is 1” insulated glass.

B. Observations
 1. In general, all windows appear to be in good condition showing only slight aging of the aluminum frame finish.

C. Recommendations
 1. None at this time
BUILDING ENVELOPE: DOORS

A. Existing Data
 1. Doors are a combination of aluminum storefront at main entrances and hollow metal doors and frames at gym, storage and receiving. O.H. door is located at receiving.

B. Observations
 1. Aluminum entrances remain in good condition.
 2. Hollow metal doors and O.H. door and jambs show signs of wear from aging and UV exposure.
 3. Right hand gym doors are beginning to deteriorate at base. Door sweeps are beginning to detach from gym doors.
 4. Bollards adjacent to receiving doors show wear from exposed elements.

C. Recommendations
 1. Future maintenance related projects should be considered to include refinishing (painting) of the exterior hollow metal doors, frames, and any steel lintels above the doors. Door sweeps shall be replaced as needed.

BUILDING ENVELOPE: ROOF

A. Existing Data
 1. Roof Structure: Roof framing is comprised of steel bar joists with steel decking.
 2. Roofing: The roof system is comprised of combination ballasted single-ply rubber roofing and standing seam metal roofing. The single-ply membrane roofing was specified with a 10-year warranty, which would have expired in 2009.
B. Observations

1. Based on discussions with Bechtel Roofing, the ballasted single-ply membrane roofing remains in satisfactory condition and has an indefinite remaining life-span.

C. Recommendations

1. Standard roof maintenance should include annual inspection of perimeter and curb flashings.

BUILDING ENVELOPE: MISCELLANEOUS

A. Existing Data

1. Hose bibs are original.
2. Dumpster gates are original.

B. Observations

1. Overall, hose bibs are in good condition. A damaged hose bib is located north of entry ‘E’.
2. Dumpster gates do not appear to function as originally intended.

C. Recommendations

1. Hose bibs require monitoring to prevent continuing damage.
2. Dumpster gates may be assessed in regards to daily operation. No work is recommended at this time.
A. Existing Data

1. Flooring materials include a combination of terrazzo (corridors), carpet, resilient flooring, ceramic tile, quarry tile and maple gym flooring.

B. Observations

1. In general, various floorings are well maintained with some areas requiring repairs or replacement.
2. Carpet in the multipurpose room shows age and wear. Carpet has been replaced in various classrooms.
3. Resilient flooring displays wear and cracking in multiple areas within shared corridors. Cracking is typical outside toilet rooms and near brick columns.
4. There are signs of movement (floor settlement) of plumbing clean-outs in some of the corridors.

C. Recommendations

1. Selected finishes could be slowly repaired or replaced over time based on priority level.
2. Clean outs shall be monitored over time for additional floor movement.

BUILDING INTERIOR: WALLS

A. Existing Data

1. The majority of interior walls are of concrete block. Stairways consist of concrete block and glazed block.

B. Observations

1. Overall, concrete block walls are in satisfactory condition.

C. Recommendations

1. None at this time
A. Existing Data

1. Interior wood doors consist of White Birch veneer flush solid core doors. Doors at fire rated openings are presently glazed with wire glass.

B. Observations

1. The wood doors appear to be in good condition with few signs of damage to the wood veneer.

C. Recommendations

1. Remove and replace all wire glass lites in doors or side lites with fire rated safety glass required by Code.

BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data

1. Finishes are generally worn throughout the building but overall in good condition taking into account the age of finishes.

2. Ceilings are primarily suspended acoustical tile. The main entrance corridor is of a suspended linear wood.

3. Plastic laminate casework is in good condition overall.

4. Fabric bulletin boards are used throughout the building.

5. Suspended fabric acoustical panels are located in the art room.

B. Observations

1. With the exception of the suspended ceiling in the kitchen area, all suspended ceilings appear in good condition.

2. Fabric bulletin boards are detaching from the walls in multiple areas.

3. Fabric is detaching from suspended acoustical panels in art room.
C. Recommendations

1. Selected finishes such as bulletin boards could be slowly replaced over time based on priority level.

2. Damaged ceiling tiles shall be replaced.

3. Ceiling T-grid in kitchen areas should be monitored for any signs of corrosion.

4. Fabric on suspended acoustical panels requires repair/reattachment.

BUILDING SPACES: FRONT VESTIBULE

A. Existing Data

1. Building provides secure entry from exterior. Interior front vestibule is designed as open concept with multiple door connections to the main office, main hallway and access to second floor with stairway.

B. Observations

1. Door access to main hallway and second floor doors are locked at all times to create a more secure interior space.

2. Visitors use rear stairways to access remaining of building once inside.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the elementary school.
HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
 1. Site provides accessible routes.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. Site provides accessible parking.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. The main entrance on the south side currently has an automatic door opener device attached to the entrance door on the east end of the entrance. Push plates have been installed on the adjacent wall surfaces on the interior and exterior sides.

B. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations
 1. All building areas are accessible.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data
 1. ADA toilet rooms are provided within the school.

B. Observations
 1. Toilet rooms are not completely compliant with current ADA guidelines.
 2. Vertical 18” grab bar missing in ADA stall.
 3. Lavatories do not have proper covers or insulation over exposed pipes.

C. Recommendations
 1. Toilet rooms comply with previous ADA guidelines when building was completed. No work is recommended at this time to update toilet facilities.

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. Building provides accessible signage.

B. Recommendations
 1. None at this time
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
EAGLE BLUFF ELEMENTARY

EAGLE BLUFF ELEMENTARY - EXISTING FLOOR PLAN

EAGLE BLUFF SECOND FLOOR PLAN

SCHOOL DISTRICT OF ONALASKA

EB - 13
SITE

The following report is the result of a site visit by Jeff Moorhouse, Paragon Associates, that occurred on 6-19-21. Site observations were used in the preparation of this report.

OVERVIEW

Eagle Bluff Elementary is a two-story building with parking on the east and south sides, and playgrounds west and north of the building. There is a tree walk with a paved trail and gazebo on the eastern side of the site. The school is a relatively new facility and as expected, site infrastructure is in generally good condition.

SIDEWALKS

A. Existing Data

1. The school’s entrance on Eagle Bluff Court has concrete public sidewalks on either side.
2. The public sidewalks continue into the school property and connect to the concrete sidewalks surrounding the building.
3. There is a paved asphalt trail in the tree walk area.

B. Observations

1. In general, the sidewalks are in good condition.
2. Broken sidewalk (map grid G5)
3. Drainage problem at the bottom of stairs at building entrance (map grid I3)
C. Recommendations

1. Replace broken sidewalk (map grid G5)
2. Pave area at the bottom of the stairs to help with the drainage issues (map grid I3)
3. Continue to monitor and repair any cracked or lifted sidewalks.

PARKING

A. Existing Data

1. The parking areas consist of concrete curb and gutter and asphalt paving.
2. There paved driveways leading to the upper playground areas – these will be addressed in the “Parking” section as well.

B. Observations

1. ADA signage installation has not been completed (map grid F-G6).
2. Pavement failure (map grid J3)
3. Standing water in pavement (map grid J3)
4. Erosion is occurring to the east of the driveway entering the upper paved play area (map grid J3-4)
5. Post and fence have been removed, but foundation remains (map grid J3)
6. Concrete area designed for bike parking is being used for vehicular parking and the concrete has been damaged (map grid E3)
7. Broken curb section (map grid C4)

C. Recommendations

1. Complete the ADA signage installation (map grid F-G6)
2. Replace pavement (map grid J3)
3. Add a drain to correct the area of standing water (map grid J3)
4. Add a paved gutter and paved apron to address the erosion problems (map grid J3-4)
5. Replace post and fence or remove the foundation (map grid J3)
6. Replace the damaged 4” concrete and replace with 6” concrete on gravel base (map grid E3)
7. Replace broken curb section (C4)
8. Continue to monitor conditions of paving and make any needed corrections.

Concrete pavement failure – map grid E3

Fence post foundation – map grid J3

Broken curb – map grid C4

PLAYGROUNDS

A. Existing Data
1. Kindergarten/Pre-K playgrounds are located in a separated area, at the southwest corner of the building.
2. There are additional playgrounds directly north and west of the building, and an upper playground at the north end of the site.

B. Observations
1. Damaged playground sign (map grid I2)
2. Broken post cap and damaged gate (map grid F2)
3. Missing post cap (map grid E2)

Damaged sign – map grid I2
C. **Recommendations**

1. Remove or replace playground sign (map grid I2)
2. Repair/replace post cap and gate (map grid F2)
3. Replace missing post cap (map grid E2)
4. Continue to inspect playground components for broken and worn equipment. Repair, replace or remove equipment that is unsafe.

FIELDS

A. Existing Data

1. There is a large grassed field area adjacent to the northern-most playground with a backstop.

B. Observations

1. Backstop bracket not attached (map grid L7)
2. See “Paving” section for erosion concerns at south end of field.

C. Recommendations

1. Reattach bracket on backstop (map grid L7)

LANDSCAPING

A. Existing Data

1. Landscaping consists of street trees, shade and evergreen trees in lawn areas, and ornamental trees and shrubs as foundation plantings along the building. There is a tree walk along the eastern side of the site, natural areas planted in native prairie, and wooded hillsides.
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
EAGLE BLUFF ELEMENTARY

B. Observations

1. Dying Ash tree at trail (map grid F9)
2. Tree walk sign posts in general are rotting off (map grid F7)
3. Volunteer Black Walnut and Black Locust trees (map grid F7)
4. Volunteer Elm, Walnut, and Boxelder at paved trail switchback, and west and east of bench (G7).
5. Volunteer Black Locust trees (map grid F7 and E7).
6. Debris has accumulated at end of paved trail bench area and is causing an erosion issue (map grid E7)
7. Branches of River Birch are impacting the building (map grid G5)
8. Trees are growing in the prairie (map grid I4-6 and J4-6)
9. Numerous Thistle (map grid I3)
10. Trees growing on steep slopes (map grid E-F1)

C. Recommendations

1. Remove dying Ash tree (map grid F9)
2. Replace tree walk sign posts (map grid F7).
3. Remove Black Walnut and Black Locust trees (map grid F7)
4. Remove volunteer Elm, Walnut and Boxelder trees (map grid G7)
5. Remove volunteer Black Locust trees (map grid F7 and E7).
6. Clear debris from under the benches at the end of the paved trail bench area so drainage can go to the west instead of the northwest. Drainage should follow along the east side of the trail and go south of the bench area (map grid E7)
7. Trim River Birch branches away from building (map grid G5).
8. Remove all trees from prairie slope except Maple near the gate for the driveway (map grid I4-6 and J4-6)
9. Kill Thistle and replant with native vegetation (map grid I3)

10. Remove trees from steep slopes (map grid E-F1).

11. Replace shade tree. Recommend Hackberry or Cutleaf Silver Maple (map grid F4)

UTILITIES

A. Existing Data

1. Site utilities include water service, sanitary, and storm sewer.

B. Observations

1. Curb inlet need to be reset (map grid G5).
2. Stormwater not all going to inlet (map grid I3)
3. Debris collecting in the inlet (map grid G2)

C. Recommendations

1. Reset curb inlet (map grid G5).
2. Fill to ensure drainage goes to the inlet (map grid I3).
3. Keep debris cleared from the inlet (map grid G2).
PLUMBING

The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data

1. Water heating equipment is gas fired instantaneous water heating equipment. 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The building is served by a duplex Hillenbrand water softener. The water softener is softening domestic HW and CW.

3. The Domestic water booster pumps/system were replaced in 2019.

4. Plumbing fixtures are in good operational condition. WCs are wall hung manual flush valve, URs are floor mount with sensor flush valves, Wash fountains have sensor operation.

5. Water service is 3” with a 3” meter and 3” CW supply piping out to building.

6. Water Piping is copper.

B. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The Sanitary, storm and water piping systems are functioning properly.

3. Water piping system is functioning properly. Valves will need to be replaced as they age.
C. Recommendations

1. Instantaneous water heating equipment is required to be maintained for scale build up on a regular basis.

2. Other Equipment will require an annual review of condition and minor ongoing maintenance as needed.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 5 years.

2. Water softening equipment should be viable for another 10 years.

3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair/replacements required due to usage, an example would be the grease interceptor.

4. Plumbing fixtures/faucets/flush valves will require ongoing minor maintenance/replacement as needed.

5. Water piping system should have a 20 year useable life. Valves may require replacement as they age.

E. Specific Areas of Concern

1. None
HVAC

The following report is the result of a site visit by Randy All, Fredericksen Engineering, Inc. that occurred on April 1st, 2021 to update previous visits that occurred on August 2nd, 2013 and March 2nd, 2018. Site observations were used in the preparation of this report.

A. Existing Data

1. The building heating system is a hot water system that consists of two (2) Hurst 80 hp firebox boilers rated at 2,678,000 btu output each. The pumping system is a primary-only arrangement with variable flow system pumps.

2. The building cooling system is a central chilled water system that consists of a 300 ton Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with an outdoor closed-circuit fluid cooler with variable speed fans. The pumping system is a primary-secondary arrangement with a variable flow system pump.

3. The building is served by constant volume air handling units and air handling units with hot water VAV control. The air handling units have been updated in recent years with pre-heat coils and coil pumps.

4. The building is controlled by a Schneider Electric/T.A.C. direct digital control system. Several Barber-Colman digital controllers that were original from 1999 were replaced with Schneider Electric controllers in 2014.

5. Bipolar ionization air purification systems were recently installed within all air handling equipment.

B. Observations

1. The hot water heating system is in good condition and, with a proper maintenance program, should continue to serve the building for another 10-15 years.
2. The chilled water system is in good condition and, with a proper maintenance program, should continue to serve the building for another 10-15 years.

3. Hot water convectors and cabinet heaters are controlled by standalone electric thermostats that are not connected to the central digital control system.

4. The hot water heating system does not contain a high-efficiency condensing boiler for summer reheat and low water temperature applications like dehumidification.

5. The Owner has indicated that the destratification fan in the front entry is ineffective and is not temperature controlled.

C. Recommendations

1. Consideration should be given to adding a small condensing boiler to the main boiler plant to provide summer reheat, shoulder month heating, and dehumidification capabilities while optimizing overall system efficiency.

2. Replace the existing destratification fan serving the front entry with a new variable speed type fan with an ECPM motor, upper level and lower level temperature sensors, and control by the BAS system.

3. Continue with the current preventative maintenance plan on all mechanical equipment.

4. Continue to maintain the existing Schneider Electric digital control system. We recommend maintaining the software with the latest updates to keep the system current.
The following report is the result of a site visit by Galileo Consulting Group, LLC that occurred on May 20, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

MAIN ELECTRICAL SERVICE

A. Existing Data

1. This school has a 1,600-amp 480Y/277 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service switchboard consists of a 1,600-amp main circuit breaker section and two circuit breaker distribution sections for the branch feeders. This service equipment was installed in 1999. The switchboard is a Cutler Hammer. There are 14 spaces available for future circuit breakers. There is an integral surge protection device.

B. Observations

1. The main service switchboard is in good working order.

C. Recommendations

1. None.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main service switchboard is about 30-35 more years.
PANELBOARDS

A. Existing Data
 1. The panelboards are Cutler Hammer and were installed in 1999.

B. Observations
 1. The panelboards generally are not full and have space for additional circuit breakers.
 2. The panelboards are in good working order.

C. Recommendations
 1. None.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the panelboards is about 30-35 more years.
A. Existing Data

1. This building has a 20 KW Cummins natural gas fueled generator. The generator is liquid cooled. It was installed in 1999. The generator is located outside of the electrical room in the dumpster enclosure.

2. There is one 70-amp Cummins automatic transfer switch located in the main electrical room. This transfer switch is used for life safely loads only.

B. Observations

1. The generator and transfer switch need repair or replacement.

C. Recommendations

1. Consider replacing generator and transfer switch soon.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the generator and automatic transfer switch is less than 5 years.
LIGHTING FIXTURES AND CONTROLS

A. Existing Data

1. The classrooms have 2x4 acrylic lens 3 or 4-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two sets of switches that control two separate banks of inboard/outboard lamps in each fixture. The light fixtures are on 8’ X 8’ centers.

2. The hallways/corridors have 2x4 combination of acrylic lens and parabolic 2-lamp fixtures. A few T8 lamps have been replaced with LED lamps with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are 24/7-night light fixtures. The fixtures are spaced 12’ on center.

3. The offices have 2x4 parabolic 3-lamp fixtures. A few T8 lamps have been replaced with LED with a color temperature of 5000K. The ballasts are electronic. Each office also has an occupancy sensor and two switches that control dual level inboard/outboard lamps in each fixture.

4. The gym has fluorescent T5HO high bay fixtures with occupancy sensors.

5. Exterior canopy fixtures, perimeter wall-packs and Parking lot pole lights are LED type. The parking lot and canopy lighting are controlled by a photocell-on, photocell-off central lighting contactor in the exterior lighting control panel. The wall pack lighting is controlled by a photocell-on, timeclock-off central lighting contactor in the exterior lighting control panel. The exterior lighting control panel is located in the main electrical room.
B. Observations

1. The staff indicated the existing interior and exterior light fixtures are in good working order and generally the light levels are good also.

2. A few incandescent lamps remain in the ‘Fish’ tank area and should be replaced with LED.

3. It was reported the 5th grade common area may be low on light illumination and additional lighting should be added.

4. Existing Library/LMC suspended chandelier type lighting fixtures have been updated to LED in 2019.

C. Recommendations

1. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $220 for each fixture.

2. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $392,063.

3. For Specialized Instruction areas such as Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.40/sq.ft.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.
WIRING DEVICES

A. Existing Data
 1. The receptacles and toggle switches are commercial grade 15A with unbreakable nylon plates

B. Observations
 1. The receptacles and toggle switches are in good working order

C. Recommendations
 1. None.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the wiring devices is about 20-25 more years.

FIRE ALARM SYSTEM

A. Existing Data
 1. The fire alarm control panel is an EST3 addressable system. The fire alarm panel is located in the main electrical room.
 2. There are pull stations by all exterior doors.
 3. There are wall mounted horn strobe devices in the corridors and classrooms.
 4. There are smoke detectors in corridors, classrooms, and storage rooms. There are heat detectors in mechanical rooms.
 5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
 6. All fire alarm cabling is installed “open air” above the ceilings.

Fire alarm notification device
B. Observations

1. The fire alarm system smoke detectors, heat detectors, horn/strobe notification devices, manual pull stations, duct detectors, etc. are original installation in 1999 and approaching the end of their useful life.

2. Fire alarm system is compliant with current fire alarm codes.

C. Recommendations

1. Consider upgrading to an audio evacuation fire alarm system.

2. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.

3. This building is not sprinklered.

4. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend continuing on this path for all schools in the district.

5. Budget estimate to upgrade to audio evacuation system installation - $93,500.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the fire alarm system is about 10-15 more years for the Fire Alarm Control Panel but will still require periodic upgrades to hardware and software. The Notification devices have 0-5 years of useful life.
CLOCK SYSTEM

A. Existing Data

1. There is a Lathem hard-wired synchronized clock system. This system is 19 years old. The clock master controller is located in the second-floor data room.

2. There are Lathem analog clocks in the classrooms, offices, and other public areas.

3. The bell tone is controlled by the master clock controller.

B. Observations

1. The clock system is in good working order but due to age is approaching the end of its useful life.

2. Additional clocks can be added to the system.

C. Recommendations

1. Replace the entire master clock system with new low voltage hard-wired Point-Over-Ether (POE) system or with line-voltage AC powered synchronized wireless system.

2. Budget $22,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the clock system is about 5-10 more years.
INTERCOM SYSTEM

A. Existing Data

1. There is a new Intercom system. This system was installed in August of 2021. The amplifier is located in the second-floor data room.

2. The intercom system is accessed through the phone system.

3. There are recessed ceiling mounted intercom speakers in the corridors and classrooms.

4. There are flush wall mounted horns on the exterior of the building.

5. The bell system is toned through the intercom speakers and has internet access.

B. Observations

1. The intercom system is in excellent working order.

2. Additional intercom speakers can be added.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the intercom system is about 15 - 25 more years.
A. **Existing Data**

1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

2. The phone cabling is CAT5 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in both second-floor data rooms.

B. **Observations**

1. The phone system is in good working order.

2. Additional phones can be added to the system.

C. **Recommendations**

1. None.

D. **Expected Remaining Lifespan**

1. The expected remaining lifespan of the Mitel 3300 phone system is about 7 more years.

DATA SYSTEM

A. **Existing Data**

1. The MDF data rack is located in the second-floor data room. There is one floor mounted data rack. There is one additional IDF data rack in the other second-floor data room.

2. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

3. The data cable is CAT5e plenum rated which is routed to patch panels in the data rack.
4. The patch panels in the data rack are CAT5e Hubbell.
5. There is a UPS.
6. Fiber optic cable to the building was installed in 2020.

B. Observations
1. The data system is in good working order.
2. Additional horizontal runs of data cable can be added to the existing rack.
3. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

C. Recommendations
1. Replace the old existing CAT5e cable with new CAT6-plus cable. $165/data jack

D. Expected Remaining Lifespan
1. The expected remaining lifespan of the CAT5e data cable is about 7-10 more years.
2. The expected remaining lifespan of the network equipment is about 7-10 more years.
CATV SYSTEM

A. Existing Data
 1. There is a CATV service to this building. The CATV distribution rack is located in the IMC work room. There is a CATV jack in each classroom.

B. Observations
 1. CATV system is no longer in use.

C. Recommendations
 1. Remove all CATV equipment and jacks.
 2. Remove all CATV Coax cable. Budget $6,000.

D. Expected Remaining Lifespan
 1. Not Applicable

SECURITY SYSTEM

A. Existing Data
 1. There is an Ademco security system. The security control panel is located in the main electrical room.
 2. The security system has motion sensors in the corridors.

B. Observations
 1. All exterior doors have contact switches.
 2. Security system is in good working order.
 3. Additional security devices can be added.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 10-15 more years.
CCTV SYSTEM

A. Existing Data
 1. There is a server-based IP CCTV system used throughout all the buildings in the district.
 2. There are interior and exterior fixed color IP cameras.

B. Observations
 1. The CCTV system is in good working order.
 2. Additional cameras can be added.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the CCTV system is about 7 more years.

ACCESS CONTROL SYSTEM

A. Existing Data
 1. There is an RS2 System door access control system which was installed for the District in 2015 - 2016.
 2. The majority of exterior doors have electric strike and key fob readers. They were added in sometime between 2017-2020.

B. Observations
 1. The access control system is in good working order.
 2. Additional doors can be added to this system.
 3. The Aiphone camera/intercom system for the YMCA entrance is not working properly. May need to be replaced.
C. Recommendations

1. Install electric strikes with key fob readers on additional exterior doors as required. $3,000/door.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the access control system is about 10-15 more years.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-0001</td>
<td>10/10/2013</td>
<td>Resilient flooring replacement</td>
<td>Maintenance</td>
<td>Art Rooms Remove existing VCT flooring with polished concrete.</td>
<td>$34,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>EB-0002</td>
<td>10/10/2013</td>
<td>Re-flash rubber membrane flashing at perimeter.</td>
<td>Maintenance</td>
<td>Re-flash rubber membrane at roof perimeter.</td>
<td>$16,000</td>
<td>Annual</td>
<td>2</td>
</tr>
<tr>
<td>EB-0003</td>
<td>10/10/2013</td>
<td>Door Glass Replacement</td>
<td>Code Compliance</td>
<td>Remove all existing wireglass installed in fire labeled doors and sidelites. Replace with new fire-protection rated safety glass.</td>
<td>$25,500</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>EB-0004</td>
<td>10/10/2013</td>
<td>Ceiling Grid Replacement in Kitchen area.</td>
<td>Maintenance</td>
<td>Replace corroded suspended ceiling system grid with aluminum based T-grid.</td>
<td>$8,700</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>EB-0006</td>
<td>10/10/2013</td>
<td>Art Room Faucet Replacement</td>
<td>Replacement</td>
<td>Existing faucets in the Art Rooms appear to show significant wear and should be replaced in the near future.</td>
<td>$5,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>EB-0011</td>
<td>3/4/2014</td>
<td>Sidewalk Replacement</td>
<td>Safety</td>
<td>Continuation of sidewalk replacement and sub base redo by front entrance – annual inspection.</td>
<td>$7,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>EB-0015</td>
<td>3/12/2015</td>
<td>Landscape</td>
<td>Safety / Operations</td>
<td>Landscape outside the art room doors to minimize water flow and ice buildup.</td>
<td>$51,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>EB-0025</td>
<td>3/31/2020</td>
<td>Replace carpet</td>
<td>Operational</td>
<td>Phased project to start replacing aged, worn carpet in all classrooms</td>
<td>$78,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>EB-0026</td>
<td>3/11/21</td>
<td>Door hardware</td>
<td>Operational</td>
<td>Replace all door locks so it is on the districts keying master plan (last school)</td>
<td>$75,000</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>EB-0026</td>
<td>3/11/21</td>
<td>Lighting (option 1)</td>
<td>Energy / Upgrade</td>
<td>Replace original lighting fixtures with LED and supporting controls</td>
<td>$185,000</td>
<td>7/12/2021</td>
<td>Option 1, 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-0024</td>
<td>3/26/2018</td>
<td>Upgrade Interior Lighting to LED, upgrade control system (option 2)</td>
<td>Technology Upgrade</td>
<td>Replace existing interior fluorescent lighting with energy efficient LED. Replace existing lighting controls with new Networked digital programmable controls.</td>
<td>$392,000</td>
<td>Option 2</td>
<td>2</td>
</tr>
<tr>
<td>EB-0025</td>
<td>3/26/2018</td>
<td>Data Cable Replacement</td>
<td>Technology Upgrade</td>
<td>Replace existing CAT5e data cable with new CAT6 data cable</td>
<td>$94,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>EB-0026</td>
<td>3/26/2018 7/12/2021</td>
<td>Upgrade existing fire alarm system to Voice-Evac</td>
<td>Systems Upgrade</td>
<td>Upgrade existing fire alarm system with new voice evac type which is the industry standard for schools. Replace all devices with new due to advanced age.</td>
<td>$93,500</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0027</td>
<td>3/26/2018 7/12/2021</td>
<td>Upgrade Master Clock System</td>
<td>Systems Upgrade</td>
<td>Replace existing Master Clock System with new due to advanced age</td>
<td>$20,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0028</td>
<td>3/26/2018 7/12/2021</td>
<td>Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior doors. Note: Door contact switches added in 2019</td>
<td>$3,500 Per door</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0029</td>
<td>3/26/2018 7/12/2021</td>
<td>Public Address Intercom System</td>
<td>System Upgrade</td>
<td>Replace existing Public Address Intercom system with new due to advanced age.</td>
<td>$50,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0030</td>
<td>3/26/2018 7/12/2021</td>
<td>CATV System</td>
<td>Maintenance</td>
<td>Delete all CATV system wiring, equipment and jacks, system no longer in use.</td>
<td>$6,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>EB-0031</td>
<td>3/8/2018 7/12/2021</td>
<td>Drainage (Map location J3)</td>
<td>Maintenance</td>
<td>Add drain inlets to eliminate mud hole.</td>
<td>$2800</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0033</td>
<td>7/12/2021</td>
<td>Rebuild low seating wall and dumpster wall</td>
<td>Maintenance</td>
<td>Rebuild exist low seating walls at main entrance and dumpster screen walls and precast concrete wall caps.</td>
<td>$45,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EB-0034</td>
<td>7/12/2021</td>
<td>Repaint HM doors and frames</td>
<td>Maintenance</td>
<td>Repaint existing hollow metal doors and frames at exterior gym and service doors</td>
<td>$1,200</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EB-0035</td>
<td>7/12/2021</td>
<td>Add condensing boiler to system</td>
<td>System upgrade</td>
<td>Add high-efficiency condensing boiler for summer reheat and dehumidification needs</td>
<td>$30,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>EB-0036</td>
<td>7/12/2021</td>
<td>Ongoing site maintenance issues</td>
<td>Maintenance</td>
<td>This site has ongoing drainage and site issues. Annual upkeep is required</td>
<td>Budget $20,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EB-0037</td>
<td>7/12/2021</td>
<td>Remove trees as needed</td>
<td>Maintenance</td>
<td>This site has ongoing issues. Annual upkeep is required.</td>
<td>Budget $20,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EB-0038</td>
<td>7/12/2021</td>
<td>Hillside above lower playground</td>
<td>Landscaping</td>
<td>This area needs to be redesigned to bring back the original plantings</td>
<td>Budget $20,000</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
IRVING PERTZSCH ELEMENTARY

524 Main Street
Onalaska, WI 54650

BUILDING DATA:

Building Area

<table>
<thead>
<tr>
<th>Year</th>
<th>Type</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950-2006</td>
<td>Existing</td>
<td>82,526 SF</td>
</tr>
<tr>
<td>2014</td>
<td>Addition/Remodel</td>
<td>10,071 SF</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>92,597 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification

Educational Group – E

Construction Type

Type II-B

Fire Protection

Sprinklered

Construction Projects/Dates

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1950</td>
<td>Original Construction</td>
</tr>
<tr>
<td>1955</td>
<td>West Wing Additions</td>
</tr>
<tr>
<td>1966</td>
<td>Additions & Remodeling</td>
</tr>
<tr>
<td>2005</td>
<td>Bus/Parent Drop-off Driveway</td>
</tr>
<tr>
<td>2006</td>
<td>Additions & Remodeling</td>
</tr>
<tr>
<td>2009</td>
<td>Community Room Enhancements</td>
</tr>
<tr>
<td>2014</td>
<td>Gymnasium Addition & Classroom Remodeling</td>
</tr>
</tbody>
</table>
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on May 3rd, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The exterior walls of the original building were constructed of masonry bearing walls comprised of modular face brick over concrete block without any rigid cavity or surface applied insulation. The exterior masonry walls of the 2006 and 2014 – 15 additions were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and an 8” concrete block backer.

B. Observations

1. The exterior face brick remains in good condition. Brick mortar joints show minimal signs of any significant deterioration. Expansion joint sealants are in good condition.

2. Expansion joints at the south wall of the gym display signs of brick expansion.

3. Lintels above windows are in good condition overall. Slight movement can be seen on the building west side.

C. Recommendations

1. Control joints that display brick expansion should be monitored on an annual basis to ensure they maintain a waterproof joint.
A. Existing Data
1. Building consists of aluminum storefront windows and frames with a combination of fixed and operable panes.

B. Observations
1. Windows and frames remain in good condition with minimal areas requiring repair.

C. Recommendations
1. Sealant around windows may be monitored on an annual basis to ensure they maintain a waterproof joint.
2. No other recommendations at this time.

BUILDING ENVELOPE: DOORS

A. Existing Data
1. Building consists of aluminum storefront entrances and hollow metal doors and frames.

B. Observations
1. Aluminum entrances and hollow metal doors and frames remain in good condition.

C. Recommendations
1. None at this time

Aluminum storefront windows

Aluminum entrance doors

Pupil Services entrance
A. Existing Data

1. The original 1950 building and 1955 west wing addition consisted of wood roof joists and decking which was left in place as part of the 2006 additions and remodeling project. The 1966 classroom/gymnasium addition was framed with steel joists and decking.

2. The 1950 and 1955 wings were roofed with a ballasted single-ply rubber membrane. The 2006 project surrounded the 1950 and 1955 wings with a 60-mil ballasted single-ply roofing over rigid insulation in combination with standing seam metal roofing applied to the raised roofs above the library and east side entrances.

3. The 1966 classroom/gymnasium wing is roofed with a urethane foam. The foam roof above the old gymnasium was recoated in 2013.

4. The 2014 gymnasium addition was roofed with a fully-adhered single-ply rubber membrane over rigid insulation.

B. Observations

1. In general, the ballasted roof areas appear to be in satisfactory condition. Perimeter of the rubber membrane roofs will likely continue pulling away from any parapet or raised roof curbs from ongoing shrinkage.

2. The foam roofs above the 1966 classroom/gymnasium wing will continue to require frequent inspections for holes thru the foam that will contribute to leakage into the interior. The foamed roof surface is irregular and allows water to pond before finding its way to the roof drains and scuppers. Damage from birds is often the source of creating holes in the foam which can expand over time. This roof was recoated in 2013.

3. Sheet metal fascia appears in satisfactory condition. The original fascia at the 1966 south end addition appears worn and deteriorating.
C. Recommendations

1. For purposes of extending the lifespan of the ballasted single ply rubber membrane roof, it is recommended that the perimeters be cut out and re-flashed with reinforced perimeter strip as needed. Membrane seams should also be reviewed/stripped on a scheduled annual basis. The maintenance work should extend the life of the ballasted roofing indefinitely.

2. The urethane foam roofs can continue to be recoated and repaired indefinitely with the understanding that frequent inspections and repairs will likely be necessary. Total tear-off and replacement with a single-ply membrane (EPDM or PVC) remains an option when conditions justify the cost of maintaining versus total replacement.

BUILDING ENVELOPE: MISCELLANEOUS

A. Existing Data

1. Downspouts and gutters are pre-finished galvanized steel with open faced downspouts.

2. Soffits are made up of various materials; metal, EIFS and wood.

B. Observations

1. Multiple downspouts at the playground display signs of damage.

2. Wood soffits at the playground dumpster refuge area display signs of damage.

3. Wood soffits on the building west side show signs of moisture damage.

C. Recommendations

1. Downspouts and wood soffit repairs may be part of an ongoing district maintenance project based on priority level.

2. Moisture damage at wood soffits should be monitored and repaired as needed.
A. Existing Data
1. Flooring materials include a combination of carpet, luxury vinyl tile, ceramic tile, and maple gym flooring.

B. Observations
1. In general, various floorings are well maintained throughout the building.

C. Recommendations
1. None at this time

A. Existing Data
1. The majority of interior walls are of concrete block with a combination of metal stud with gypsum board interior partitions.

B. Observations
1. Overall, walls are in satisfactory condition.

C. Recommendations
1. None at this time

A. Existing Data
1. Interior doors are solid core wood doors and hollow metal frames.

B. Observations
1. Doors remain in good condition.

C. Recommendations
1. None at this time
A. **Existing Data / Observations**

1. Finishes throughout the building are in overall good condition.

2. Acoustical tile ceilings remain in good condition.

3. Plastic laminate (recent and original) and original wood casework show minimal wear and remain in good condition.

B. **Recommendations**

1. Additional wall protection to drywall surfaces, primarily in high-abuse areas such as main corridors and stairwells, could be applied using PVC sheet membrane as supplement to the vinyl corner guards already in place.

2. No other recommendations at this time

BUILDING SPACES: ORIGINAL PUPIL SERVICES

A. **Existing Data**

1. The district nurses are currently located in the previous Pupil Services due to lack of space in the district office building.

2. This area consists of offices, conference rooms, open work area and supplemental rooms such as toilets, storage, work room and break room.

B. **Observations**

1. All rooms are currently full and being utilized for offices, food pantry storage, clothing storage, nurse supply storage, and supporting nurse and health services for students in the district.
C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the elementary school and district office.

HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations

1. The Irving Pertzsch Elementary site currently provides accessible routes from 1) the south side bus drop-off area, 2) main building entrance on the east end, and 3) all entrances from the playground side, and 4) Entrance B off from Main Street (day care and Community Room).

B. Recommendations

1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations

1. Site provides accessible parking.

B. Recommendations

1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. Door operators have been provided at Entrance A, Entrance B, and Pupil Services on the east end.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations
 1. Both levels are connected by elevator located near the entrance to the LMC. All classrooms, corridors and auxiliary spaces were designed for compliance with ADA guidelines for interior circulation.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data
 1. All new toilet rooms as part of the 2006 and 2014 projects were designed in compliance with the ADA guidelines.

B. Observations
 1. Original toilet rooms designed before 2006 and 2014 are not completely compliant with current ADA guidelines.

C. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. ADA compliant signage was provided as part of the 2006 and 2014 building projects.

B. Recommendations
 1. None at this time
SITE

The following report is the result of a site visit by Jeff Moorhouse, Paragon Associates, that occurred on 6-20-21. Site observations were used in the preparation of this report.

OVERVIEW

Irving Pertzsch Elementary is a two-story building with parking on the northeast side and playgrounds south of the main building. Irving Pertzsch completed several relatively recent additions and site improvement projects. A majority of site amenities are still in good condition.

SIDEWALKS

A. Existing Data
 1. A large portion of the school’s sidewalks were constructed or reconstructed during the recent addition projects. Irving Pertzsch also utilizes the adjacent public sidewalks.

B. Observations
 1. In general, the sidewalks are in good condition.

C. Recommendations
 1. Continue to monitor and note any cracked or lifted sidewalks.
A. Existing Data

1. The main parking lot at the northeast corner of the site consists of asphalt paving with some concrete curb and gutter. There is a small parking area on the south side of the site with additional handicap accessible spaces, constructed of concrete curb and gutter and concrete paving.

B. Observations

1. The paving and curb and gutter in both locations are still in good condition.

C. Recommendations

1. Replace sign with legible one (map grid H5)
2. Continue to monitor conditions of paving and make any needed corrections.

PLAYGROUNDS

A. Existing Data

1. There is a playground for lower elementary-aged children, south of the recent addition.
2. There is a playground for upper elementary-aged children with a variety of play structures and swings, located south of the main building and east of the recent additions.
3. There is a large asphalt paved area between the main building and the upper elementary-aged playground, that is marked for a variety of games, as well as a small track.
B. Observations

1. Asphalt is showing some signs of small area failure, but still serviceable (map grid D-E5 and D3)
2. Playground edging is broken (map grid D5)
3. Play structure’s stairs and landing areas have cracked/peeling coating and metal beneath is rusting (map grid C5)
4. Concrete fish paint is peeling (D4)

C. Recommendations

1. Consider repaving entire play area in the 10 year plan (map grid D-E5 and D3).
2. Replace broken playground edging (map grid D5).
3. Consult with playground manufacturer for repairs or replacement of landing and stair areas (map grid C5).
4. Consult with professional painting company for proper surface preparation, and base/surface coat of paint for concrete fish (map grid D4).

FIELDS

A. Existing Data

1. Due to the urban nature of Irving Pertzsch, field space is limited. There is a small grass area south of the main playground that can be used for group games and field sports (with restrictions)
B. Observations

1. The field appears to be in serviceable condition, as well as the fence separating it from the pick-up/drop-off area.

C. Recommendations

1. Continue to inspect fencing for broken components.

LANDSCAPING

A. Existing Data

1. Landscaping consists of street trees, shade and evergreen trees in lawn areas, and ornamental trees, shrubs and grasses as foundation plantings along the building, as well as a large unit block retaining wall along the southwest corner of the site, adjacent to the smaller playground and west side of the newest building addition.

B. Observations

1. There are bare areas of the lawn in the pre-K/K play area (map grid B3).
2. There are some large dead branches in the Siberian Elm (map grid B5)
3. Dead branches in the spruce trees (map grid F6)
4. Trees growing in the fragrant sumac (map grid G6)

C. Recommendations

1. Reseed bare areas of lawn in the pre-K/K play area (map grid B3).
2. Prune the dead branches from the Siberian Elm (map grid B5).
3. Prune the dead branches from the spruce trees (map grid F6)
4. Remove trees growing in the fragrant sumac (map grid G6)
UTILITIES

A. Existing Data
 1. Site utilities include water service, sanitary, and storm sewer. Several large underground storm pipes are used for storm water storage.

B. Observations
 1. Most utility structures that could be observed appeared to be in good working order.
 2. Inlet appears to be plugging and there are signs of erosion across the driveway (map grid G5)
 3. Inlet apron partially cracked and damaged (map grid D3).

C. Recommendations
 1. Replace inlet frame and grate with Neenah model R-2560 or equal to keep from plugging (map grid G5).
 2. Replace concrete inlet (map grid D3).
The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data

1. Water heating equipment is sealed combustion gas fired instantaneous water heating equipment. 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The building is served by a single Hillenbrand water softener in the 2014 addition. The water softener is softening domestic HW only.

3. Plumbing fixtures are in good operational condition. WCs are wall hung flush valve are a mix of sensor operated and manual, URs are floor mount with sensor and manual flush valves, Lavs have manual faucets.

4. Domestic Water service is 3” with a 2” meter and 3” CW supply piping out to building and 2” for north end lawn irrigation.

5. Water Piping is galvanized and copper with brass valves.

6. There is a 6” Water service for Fire Protection System. This service also serves cooling water for the HVAC chiller in the 2014 addition and the south end lawn irrigation.

7. A fire protection system is only provided in the 2014 addition.

8. There are large backflow preventers for the 2 lawn irrigation systems and the CW to the HVAC chiller.

9. There is an exterior buried grease interceptor for the kitchen waste piping.
B. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The sanitary, storm and water piping systems are functioning properly.

3. Water piping system is functioning properly, Valves will need to be replaced as system ages.

C. Recommendations

1. Install a Duplex water softening system at the domestic water service to soften water to the entire building.

2. Other Equipment will require an annual review of condition and minor ongoing maintenance as needed.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 15 years.

2. Water softening equipment should be viable for another 10 years.

3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair/replacements required due to usage, an example would be the grease interceptor.

4. Plumbing fixtures/faucets/flush valves will require on going minor maintenance/replacement as needed.

5. Water piping system should have a 20+ year useable life. Valves may require replacement as they age.

E. Specific Areas of Concern

1. None
A. Existing Data

1. The building heating system is a hot water system that consists of two (2), Lochnivar condensing boilers with a 96.2% efficiency rating and a 25:1 turn down ratio for higher efficiencies. Both boilers rated at 2,000,000 btu output each. The pumping system is a primary-secondary arrangement with variable flow system pumps. Each boiler is served by an inline primary pump while main and stand-by pumps are piped in parallel in the secondary loop.

2. The building cooling system is a central chilled water system that consists of a 100 ton indoor water-cooled Multi-Stack chiller that is cooled by city water. It is piped in series with a 50 ton indoor Multi-Stack heat recovery chiller. The heat recovery chiller provides cooling during light load and spring/fall conditions while the condenser water loop is connected to the hot water system piping to provide warm water for reheat and areas requiring lighter amounts of heat. If the condenser water heat cannot be rejected to the hot water system, a modulating 3-way valve directs the water to an outdoor fluid cooler. The pumping system is a primary-secondary arrangement with variable flow system pumps. The heat recovery chiller is served by constant flow pumps on both the evaporator and condenser sides of the unit.
3. The building is served by a mixture of constant volume air handling units with booster coil reheat, fan coil units, and unit ventilators. Two (2) roof-mounted energy recovery units with energy recovery wheels provide fresh air to the 2006 classroom wing. These units were installed in 2014 to replace the original unit from 2006 that was undersized.

4. While the majority of the HVAC equipment was installed new in 2006, some original equipment remains including some of the unit ventilators. Two (2) new air handling units were installed in 2015 to serve the new gymnasium and classroom area in the building addition. These units incorporate single-zone VAV control (Gymnasium) and traditional VAV control (Classrooms) along with demand control ventilation utilizing carbon dioxide sensors to modulate the amount of fresh outdoor air required to each system based on actual load conditions.

5. The building is controlled by a Schneider Electric digital control system.

6. Bipolar ionization air purification systems were recently installed within all air handling equipment.

B. Observations

1. Both boilers were recently installed, one in 2019 and one in 2021, with a life expectancy of 15-20 years based on equipment data.

2. The indoor water-cooled chiller was installed new in 2015 and is in excellent condition. The heat recovery chiller was installed in 2006 and is in good condition. These chillers operate on R410a refrigerant which is considered a current and environmentally-friendly product.
3. The air handling equipment installed in 2006 has been well maintained and is in good condition. The 2015 air handling units are in excellent condition.

4. The unit ventilators that were installed as part of the original building construction are in fair condition but are near or past the end of their expected service life.

5. The Owner has expressed several concerns regarding heating and control of the older building construction, zone control, and humidity.

6. The majority of the corridors are unconditioned. The Owner has commented that they are often stuffy and humid. A couple of the corridors were addressed in the 2015 building project by serving them from the new air handling system.

7. The two energy recovery units that were installed in 2014 have reportedly been experiencing issues related to the performance of the energy recovery wheels and not being able to deliver the supply air temperatures that they were originally designed for.

8. The Owner has reported that the hot water system expansion tanks are undersized and in need of replacement with increased capacity.

9. The Owner has also reported that the building experiences high humidity levels in warmer weather.

C. Recommendations

1. The hot water and chilled water systems serving the building are overall in good operating condition.

2. Remove the existing booster coil reheat systems and replace with hot water VAV systems to improve energy efficiency and zone control.
3. Remove and upgrade the systems currently serving the original building construction to improve capacities and humidity control.

4. The existing 2014 energy recovery units likely require service from the manufacturer to investigate why the units are under-performing.

5. The hot water system capacity should be re-evaluated and expansion requirements calculated to address the current issue with the undersized expansion tanks.

6. Continue to maintain the existing Schneider Electric control system.
The following report is the result of a site visit by Galileo Consulting Group, LLC on June 10th, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

MAIN ELECTRICAL SERVICE

A. Existing Data

1. This school has a 2,000-amp 208Y/120 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is mounted to a free-standing structure near the utility transformer. The meter socket is mounted next to the CT cabinet on the free-standing structure. The main service switchboard consists of a 2,000-amp main circuit breaker section and a circuit breaker distribution section for the branch feeders. This service equipment was installed in 2006. The switchboard is a General Electric. There are 14 spare circuit breaker spaces in the switchboard

B. Observations

1. The main service switchboard has an integral surge protection device.

C. Recommendations

1. None.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main service switchboard is about 35-40 more years.
PANELBOARDS

A. Existing Data

1. The panelboards are General Electric.

2. A majority of the panelboards were installed in 2006. There are a few panelboards from 1960 that are still in use. Two new panelboards were installed in 2014 when the new Gymnasium Addition was constructed.

B. Observations

1. The panelboards generally have space for additional circuit breakers.

2. The panelboards that were installed in 1960 are at the end of their useful life due to the operating lifespan of circuit breakers.

3. The panelboards that were installed in 2006 are in good working order.

C. Recommendations

1. Replace the 1960 panelboards and feeder with new. New circuit breakers will allow for a safer and more expandable installation. $8,000 EA

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the 1960 panelboards is less than 0-5 more years.

2. The expected remaining lifespan of the 2006 panelboards is about 25 - 30 more years.
GENERATOR

A. Existing Data
1. This building has a 180 KW Cummins natural gas fueled generator. The generator is liquid cooled. It was installed in 2006.
2. There is one Cummins automatic transfer switch for the life safety loads and one Cummins automatic transfer switch for the equipment loads.

B. Observations
1. The generator is in good working order.

C. Recommendations
1. None.

D. Expected Remaining Lifespan
1. The expected remaining lifespan of the generator and automatic transfer switch is about 20 - 25 more years.

LIGHTING FIXTURES AND CONTROLS

A. Existing Data
1. The 2006 classrooms have 2x4 direct/indirect center basket 3-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two sets of switches that control two banks of inboard/outboard lamps in each fixture. The light fixtures are on 8’ X 8’ centers.
2. The 1960 classrooms have surface wraparound 4-lamp fixtures. The lamps are T8 with a color temperature of 5000K. Each classroom has two switches that control the inboard/outboard lamps in each fixture.
3. The corridors have 2x4 acrylic lens 2-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors. There are
24/7-night light fixtures. The fixtures are spaced 12’ on center.

4. Exterior canopy, perimeter wall packs and parking lot fixtures are LED. The exterior lighting is controlled from a photocell-on, timeclock-off central lighting contactor which controls all fixtures at the same time.

5. In 2014 a new Gymnasium addition was built which has LED lighting fixtures with occupancy sensor controls. In addition 3-class-rooms located adjacent to the North of the Gymnasium were remodeled and have LED lighting fixtures and occupancy sensor controls.

B. Observations
 1. There are no occupancy sensors in the 1960 classrooms.

C. Recommendations
 1. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $250/fixture.
 2. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $272,283
 3. For Specialized Instruction areas such as Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.50/sq.ft.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the interior light fixtures in the 2006 classrooms is about 10 - 15 more years.
 2. The expected remaining lifespan of the interior light fixtures in the 1960 classrooms is about 5 more years.
WIRING DEVICES

A. Existing Data
 1. The receptacles and toggle switches are commercial grade 20A with unbreakable nylon plates.

B. Observations
 1. Switches and receptacles are in good working order.

C. Recommendations
 1. Replace any broken switches and receptacles. $35 EA
 2. Add additional receptacles to classrooms and Hallways as required. $250 EA

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the wiring devices is about 25 more years.

FIRE ALARM SYSTEM

A. Existing Data
 1. The fire alarm is an EST Quick Start addressable system. The system is 15 years old and was installed in 2006. The fire alarm control panel is located in the lower-level mechanical room.
 2. There is one pull station at the main entrance.
 3. There are ceiling mounted horn strobe devices in the corridors and classrooms.
 4. There are smoke detectors in the classrooms, corridors, and storage rooms. There are heat detectors in mechanical rooms.
 5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
 6. All fire alarm cabling is installed “open air” above the ceiling.

Fire alarm pull station
B. Observations

1. The fire alarm system is in good working order.
2. Fire alarm system is compliant with current fire alarm codes.

C. Recommendations

1. Consider upgrading to an audio evacuation fire alarm system:
2. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
3. This building is not sprinklered.
4. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend continuing on this path for all schools in the district.
5. Budget estimate to upgrade to audio evacuation system installation - $93,500.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the fire alarm system is about 10 - 12 more years. However, it has been reported that replacement parts for the system are difficult to obtain.
CLOCK SYSTEM

A. Existing Data

1. There is a Sapling and Lathem wireless synchronized clock system. The Master Clock system was updated to ‘Sapling’ a few years ago, approximately 2018. The clock master controller is located in the main IT room.

2. There are Sapling and Lathem analog battery powered clocks in the classrooms, offices, and other public areas. The majority of clocks are ‘Sapling’ manufacturer with a few ‘Lathem’ clocks remaining.

3. The bell tone is controlled by the master clock controller.

B. Observations

1. The clock system is in good working order.

2. Additional clocks can be added to the system.

C. Recommendations

1. None.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the clock system is about 15-20 more years.
INTERCOM SYSTEM

A. Existing Data

1. There is a Telecor intercom system. This system is 15 years old and was installed in 2006. The amplifier is located in the main IT room.
2. The intercom is accessed through the phone system.
3. There are recessed ceiling mounted intercom speakers in the classrooms and corridors. There are horns on the exterior near all doors.

B. Observations

1. The intercom system is in good working order.
2. Additional intercom speakers can be added.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the intercom system is about 10 – 15 more years.
PHONE SYSTEM

A. Existing Data

1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 – 2016. New IP phones have been installed throughout the school.

2. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the main IT room.

B. Observations

1. The phone system is in good working order.

2. Additional phones can be added to the system.

C. Recommendations

1. Remove all CAT 3 wiring and replace with new CAT 6 Plus. Budget $35,000.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the Mitel 3300 PBX phone system is about 10 more years.

DATA SYSTEM

A. Existing Data

1. The MDF data rack is located in main IT room. There are three floor mounted data racks. There is one additional IDF data rack located on the east side of the building.

2. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.
3. The data cable is CAT6 plenum rated which is routed to patch panels in the data rack.

4. The patch panels in the data rack are CAT6 Panduit.

5. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

6. There is a rack mounted.

B. Observations

1. The data system is in good working order.

2. Additional horizontal runs of data cable can be added to the existing rack.

C. Recommendations

1. None.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CAT6 data cable is about 7-12 more years.

CATV SYSTEM

A. Existing Data

1. There is a CATV service to this building. CATV splitters are located in the main IT room. CATV system is no longer in use.

2. There is a CATV jack in each classroom.

3. There is a ceiling mounted projector and/or wall mounted television in each classroom.

4. Some classrooms have smartboards.
B. Observations
 1. CATV system is in working order.
 2. Additional CATV jacks can be added.

C. Recommendations
 1. Remove all CATV equipment and jacks.
 2. Remove all CATV Coax cable. Budget $6,000.

D. Expected Remaining Lifespan
 1. Not Applicable

SECURITY SYSTEM

A. Existing Data
 1. There is an Ademco security system. The security control panel is located in the main IT room. This system was updated a few years ago in 2017 - 2018.
 2. The security system has motion sensors in the corridors.

B. Observations
 1. All exterior doors have contact switches.
 2. Security system is in good working order.
 3. Additional security devices can be added.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 10 – 15 more years.
CCTV SYSTEM

A. Existing Data

1. There is a server-based IP CCTV system used throughout all the buildings in the district.
2. There are interior and exterior fixed color IP cameras.
3. Current Network recorder has the capability of recording for 30 days

B. Observations

1. CCTV system is in good working order.
2. Additional cameras have been added over the past 3-years for better security coverage

C. Recommendations

1. Provide additional interior and exterior IP Cameras. $1,100/camera for interior, $2,200/camera for exterior

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CCTV system is about 5 – 7 more years.
ACCESS CONTROL SYSTEM

A. Existing Data

1. There is an RS2 System door access control system installed for the District in 2015 – 2016.

B. Observations

1. The access control system is in good working order.
2. Additional doors can be added to this system.

C. Recommendations

1. Install electric strikes, key fob readers, door contacts, etc. on additional exterior doors as needed for additional security and building use. Budget - $3,500/door

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the access control system is about 15-20 more years.
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
IRVING PERTZSCH ELEMENTARY

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-0003</td>
<td>10/10/2013</td>
<td>Wall Protection</td>
<td>Maintenance</td>
<td>Install new PVC wall protection wainscoting over drywall surfaces in corridors and stairwells.</td>
<td>$60,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0004</td>
<td>10/10/2013</td>
<td>Vestibule Flooring Replacement</td>
<td>Maintenance</td>
<td>Replace walk-off carpet tile in vestibules.</td>
<td>$9,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0008</td>
<td>10/10/2013</td>
<td>Sidewalk Replacement Site Grid Location B4</td>
<td>Replacement</td>
<td>Replace (5) broken squares of concrete (B4) Replace (1) broken squares of concrete (B2,C3)</td>
<td>$5,400</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>IP-0010</td>
<td>10/10/2013</td>
<td>Water Softener Re-piping -add cold water</td>
<td>Maintenance</td>
<td>Re-pipe water softeners to provide soft water for both hot and cold water. Consider duplex system.</td>
<td>$24,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0016</td>
<td>10/10/2013</td>
<td>Panelboard Replacement In 1966 Wing</td>
<td>Equipment Upgrade</td>
<td>Replace the 1966 panelboards and feeder with new.</td>
<td>$9,500</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0018</td>
<td>10/10/2013</td>
<td>Classroom Power Upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacles to the classrooms as required.</td>
<td>$13,500</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0026</td>
<td>5/5/2020</td>
<td>Roofing repairs</td>
<td>Maintenance</td>
<td>Re-flash rubber roof membrane at roof perimeter</td>
<td>$18,000 Annual</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>IP-0031</td>
<td>3/21/2019</td>
<td>Playground Egress</td>
<td>Safety/Security</td>
<td>Add means of quick egress from playground areas - needs further discussion</td>
<td>$8,800</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>IP-0033</td>
<td>3/21/2019</td>
<td>Replace failed back up boiler (3rd boiler)</td>
<td>Operational</td>
<td>Back up boiler is failing and will need to be replaced in the near future</td>
<td>$98,000</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>IP-0035</td>
<td>3/11/2021</td>
<td>Lighting (option 1)</td>
<td>Energy/Upgrade</td>
<td>Replace original lighting fixtures with LED and supporting controls</td>
<td>$135,000 Option 1</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
</tbody>
</table>

2018 AND 2021 ASSESSMENT ITEMS

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-0029</td>
<td>3/27/2018</td>
<td>New Interior LED lighting and digital programmable controls (option 2)</td>
<td>System Upgrade</td>
<td>Replace all existing fluorescent interior lighting fixtures with new LED type. Provide new digital programmable networked lighting controls for energy efficiency</td>
<td>$272,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>IP-0030</td>
<td>3/27/2018</td>
<td>Upgrade existing fire alarm system to Voice/Audio Evac</td>
<td>Technology Upgrade</td>
<td>Upgrade the existing addressable fire alarm system to Voice Evac type to match industry standard for all schools.</td>
<td>$93,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>IP-0032</td>
<td>4/02/2018 7/12/2021</td>
<td>Electronic Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior and interior doors.</td>
<td>$3,500/Per door</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP-0033</td>
<td>3/27/2018 7/12/2021</td>
<td>Remove existing Phone CAT 3 cable and replace with CAT6</td>
<td>System Upgrade</td>
<td>Remove existing CAT3 cable and jacks and replace with CAT6 cable and jacks.</td>
<td>$35,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0034</td>
<td>3/27/2018 7/12/2021</td>
<td>Remove existing CATV system wiring, equipment and jacks</td>
<td>Operational</td>
<td>Remove existing COAX cable, equipment and jacks no longer used for the CATV system.</td>
<td>$7,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IP-0035</td>
<td>3/8/2018 7/12/2021</td>
<td>Front entrance pavement along accessible route is not compliant, G4</td>
<td>Failure</td>
<td>Correct driveway pavement to be flush with entrance sidewalk. Currently the driveway is 1.5' higher than the sidewalk.</td>
<td>$11,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP-0036</td>
<td>3/8/2018 7/12/2021</td>
<td>Driveway pavement failure, F5</td>
<td>Failure</td>
<td>Reconstruct approximately 1500 sf of driveway.</td>
<td>$26,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>IP-0037</td>
<td>3/8/2018 7/12/2021</td>
<td>Playscape, D4, B3</td>
<td>Code</td>
<td>No ADA accessibility or equipment.</td>
<td>$9,500</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>IP-0038</td>
<td>3/8/2018 7/12/2021</td>
<td>ADA signage, A4, G5, and H5</td>
<td>Code</td>
<td>ADA signs do not meet Code. (Bottom of sign to be 60” above grade. Sign at H5 is not legible)</td>
<td>$1,800</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0039</td>
<td>3/8/2018 7/12/2021</td>
<td>Broken and dislocated sidewalks at west entrance, D2</td>
<td>Failure</td>
<td>Replace broken and displaced sections (2).</td>
<td>$1,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0040</td>
<td>3/8/2018 7/12/2021</td>
<td>Unstable bench, G3</td>
<td>Maintenance</td>
<td>Repair bench construction so the seat is stable.</td>
<td>$400</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0042</td>
<td>4/5/2018 7/12/2021</td>
<td>Building HVAC Replacement</td>
<td>Upgrade & Energy Efficiency Improvements</td>
<td>Remove and replace the existing booster coil reheat systems serving the original building construction that was not upgraded in the 2015 project. Provide new VAV systems served by the hot water and chilled water systems with new Schneider Electric digital controls as an extension of the 2015 system.</td>
<td>$25 per square foot of area involved</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0043</td>
<td>7/12/2021</td>
<td>Replace existing playground paved area</td>
<td>Maintenance</td>
<td>Consider replacing existing paved play area in a 10-year plan (Map grid D-E5 and D3)</td>
<td>$104,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>IP-0044</td>
<td>7/12/2021</td>
<td>Replace existing playground drain/basin</td>
<td>Maintenance</td>
<td>Replace existing drain grate and basin at playground (Map Grid G5)</td>
<td>$1,800</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>IP-0045</td>
<td>7/12/2021</td>
<td>Hot water expansion tanks</td>
<td>Maintenance</td>
<td>Re-evaluate the hot water system capacity and expansion requirements to address size of expansion tanks</td>
<td>$TBD</td>
<td>TBD</td>
<td></td>
</tr>
<tr>
<td>IP-0046</td>
<td>7/12/2021</td>
<td>Landscaping (map grid B3, B5, F6, G6)</td>
<td>Maintenance</td>
<td>Various areas of lawn reseeding (B3) and plant pruning (B5, F6, G6 – see report for specific instructions)</td>
<td>$2,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
<td>--------------------------------------</td>
<td>-------------</td>
<td>---</td>
<td>--------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP-0049</td>
<td>7/12/2021</td>
<td>Utilities/drainage (map grid G5, D3)</td>
<td>Maintenance</td>
<td>Replace inlet frame and grate (G5) and replace concrete apron around inlet (D3)</td>
<td>$2,900</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
PAGE INTENTIONALLY LEFT BLANK
NORTHERN HILLS ELEMENTARY

910 East Ave North
Onalaska, WI 54650

BUILDING DATA:

Building Area

<table>
<thead>
<tr>
<th>Year</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014 Remodel</td>
<td>57,918 SF</td>
</tr>
<tr>
<td>2014 Addition</td>
<td>36,093 SF</td>
</tr>
<tr>
<td>Total</td>
<td>94,011 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification

Educational Group – E

Construction Type

Type II-B

Fire Protection

Sprinklered

Construction Projects/Dates

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1972</td>
<td>Original Construction</td>
</tr>
<tr>
<td>1991</td>
<td>Northside Classroom Wing Addition</td>
</tr>
<tr>
<td>2014</td>
<td>Remodeling & Addition</td>
</tr>
</tbody>
</table>
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on April 22nd, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The Northern Hills Elementary School was remodeled and added onto in 2014 creating more or less a new facility. The intent of the project was to salvage most of the original 1972 elementary and 1991 classroom wing. The combined remodeled and new construction totaled approximately 94,000 SF.

2. In general, the new additions were constructed with exterior masonry walls with face brick cladding and manufactured stone. Accent areas were designed with prefinished ribbed metal wall panels.

B. Observations

1. Overall, exterior face brick, stone and metal panels are in good condition with limited areas requiring monitoring or repair.

2. Various areas at manufacture stone veneer display rust spots. It is likely there are mixed metals within the stone causing rust to occur.

3. Slight movement in manufactured stone has occurred on the south end of the building.

4. Multiple areas display damage to building masonry.

5. Mortar is missing in a couple locations such as the SE corner beyond the commons and adjacent to entry ‘C’ under the classroom windows.

6. Masonry columns at mechanical enclosure show signs of moisture damage.

7. Lintel at south stair is not painted.
C. Recommendations

1. Rusted areas in stone should be continuously monitored and assessed for patch and repair. Ongoing repairs may be considered as part of a district maintenance project.

2. Shifting of stone shall be monitored.

3. Mortar should be added in areas where missing.

4. Stone caps at mechanical enclosure should be properly sealed to prevent continuous moisture damage in columns.

BUILDING ENVELOPE: WINDOWS

A. Existing Data

1. Building consists of aluminum storefront windows and frames.

B. Observations

1. Windows and frames remain in good condition.

C. Recommendations

1. None at this time

BUILDING ENVELOPE: DOORS

A. Existing Data

1. Building consists of aluminum storefront entrances and hollow metal doors and frames.

B. Observations

1. Aluminum entrances and hollow metal doors and frames remain in good condition.

C. Recommendations

1. None at this time
BUILDING ENVELOPE: ROOF

A. Existing Data
 1. Roof framing includes steel joists and metal decking. Roofing consists of a combination of single-ply rubber ballasted and full-adhered. Entrance canopy’s have standing seam metal roofing.
 2. The 1971 and 1991 ballasted rubber roofs were replaced in 2003 with a 10 year roof warranty system.
 3. The 2014 portions of the building were constructed with a 60 mil fully adhered roofing system with a 20 year warranty.
 4. The metal canopies are also a 20 year warranted roof system.

B. Observations
 1. The 2003 roof sections have outlasted the warranty however the roof appear in satisfactory condition
 2. The 2014 sections appear in good condition.

C. Recommendations
 1. Monitor roof conditions on an annual basis and repair as needed. It is expected that although the warranty has expired on portions of the roof the life expectancy can be extended.

BUILDING ENVELOPE: MISCELLANEOUS

A. Existing Data
 1. Downspouts and gutters are prefinished galvanized steel with open faced downspouts.
 2. Soffits at entries are prefinished metal.

B. Observations
 1. Downspouts, gutters and soffits remain in good condition.

C. Recommendations
 1. None at this time
BUILDING INTERIOR: FLOORING

A. Existing Data
 1. Flooring materials include a combination of carpet, luxury vinyl tile, ceramic tile, and maple gym flooring.

B. Observations
 1. In general, various floorings are well maintained throughout the building with few areas to be monitored.
 2. Multiple tiled areas in toilet rooms display cracks in floor likely due to concrete floor shrinkage.
 3. Metal base trim adjacent to kitchen cooler/freezer is damaged at the corner.

C. Recommendations
 1. Tile floor should be monitored. No recommendations at this time.
 2. Metal trim should be repaired.

BUILDING INTERIOR: WALLS

A. Existing Data
 1. The majority of interior walls are of concrete block with a combination of metal stud with gypsum board interior partitions.

B. Observations
 1. Walls remain in satisfactory condition overall with limited areas to be monitored.
 2. Upper atrium shows cracks in drywall joints due to movement in the building. A few other areas in classrooms/spaces display similar conditions.

C. Recommendations
 1. Drywall cracks should be monitored. If increasing shrinkage occurs, joints may be replaced with expansion joints.
BUILDING INTERIOR: DOORS AND FRAMES

A. Existing Data
 1. Interior doors are solid core wood doors and hollow metal frames.

B. Observations
 1. Doors remain in good condition.

C. Recommendations
 1. None at this time

BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data / Observations
 1. Finishes throughout the building are in overall good condition.
 2. Acoustical tile ceilings remain in good condition.
 3. Plastic laminate casework show minimal wear and remain in good condition.

B. Observations
 1. Cafeteria bench is missing end panel.

C. Recommendations
 1. End panel needs to be replaced at bench.
 2. No other recommendations at this time
SUPPORT BUILDINGS: EXTERIOR STORAGE GARAGE

A. Existing Data
1. The existing storage garage is a 24’ x 24’ wood framed structure located off the northeast corner of the school and utilized for miscellaneous equipment.
2. The structure consists of wood stud framed walls on a concrete floor slab, prefabricated wood trusses, vinyl lap siding and asphalt shingled roof.

B. Observations
1. In general, the garage structure appears to be in satisfactory condition. The asphalt shingles should provide several more years before it becomes necessary to replace the shingles.

C. Recommendations
1. The hollow metal doors should be scheduled for refinishing with a high-performance paint coating to extend the life of the doors.
2. Add pole light at north side of garage to illuminate gazebo area.

HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
1. Site provides accessible routes.

B. Recommendations
1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. Site provides accessible parking.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. Accessible building access is provided to all entrances.

B. Recommendations
 1. Rework and modify entrance system to enhance ADA access and security.

HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations
 1. Building provides access to both floors by elevator. All spaces are designed to comply to with ADA guidelines for interior circulation.

B. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data / Observations
 1. Building provides ADA compliant toilet rooms.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. ADA compliant signage is provided throughout the building.

B. Recommendations
 1. None at this time
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
NORTHERN HILLS ELEMENTARY

SITE

The following report is the result of a site visit by Jeff Moorhouse, Paragon Associates, that occurred on 6-19-21. Site observations were used in the preparation of this report.

OVERVIEW

Northern Hills Elementary is a two-story building with parking on the southeast and west side, and playgrounds and fields on the north side. Northern Hills completed a large addition and site improvement project in the fall of 2015. A majority of site amenities are still in good condition.

SIDEWALKS

A. Existing Data
 1. A large portion of the sidewalks were installed as part of the recent addition project, as well as the City of Onalaska Pedestrian Improvement project and Spruce Street project.

B. Observations
 1. In general, the sidewalks are in good condition.

C. Recommendations
 1. Continue to monitor and repair any cracked or lifted sidewalks.
PARKING

A. Existing Data

1. The parking areas in general consist of concrete curb and gutter and asphalt paving. The west parking lot was paved as part of the building addition project and the south parking lot was reconstructed as part of the City of Onalaska’s Spruce Street improvement project. The east parking lot is the oldest on the site.

B. Observations

1. The asphalt paving and curb and gutter are still in good condition.

2. There is an area of dead lawn (map grid D6) that appears to be where the snow from the parking lot is stored.

C. Recommendations

1. Consider installing an apron in the snow storage area with a drain connected to the storm sewer (approx. 100’ of storm sewer).

2. Continue to monitor conditions of paving and make any needed corrections.

PLAYGROUNDS

A. Existing Data

1. Playgrounds include two separated play structure areas, one for lower elementary-aged children and one for upper elementary-aged children, a play structure area with balance/fitness components, swings area, gaga ball courts and a gazebo.

B. Observations

1. In general, the playground areas and structures are in good condition.

2. Lower elementary-aged play structure area does not have ADA access (map grid E3).
C. Recommendations

1. Provide ADA access to the lower elementary-aged play structure area (map grid E3).

2. Continue to inspect playground components annually for broken or worn equipment. Repair, replace or remove equipment that is unsafe.

3. Continue to inspect fall protection base material and replenish as needed.

FIELDS

A. Existing Data

1. Fields consist of a softball field, with the backstop at the far northwest corner of the site. The softball outfield provides an area for football, soccer, etc.

B. Observations

1. The softball field backstop and fencing have some broken or missing components.

C. Recommendations

1. Repair/replace missing end brace rail on fence (map grid G2).

2. Repair backstop bottom rail (map grid H2).

LANDSCAPING

A. Existing Data
 1. Landscaping consists of street trees, shade and evergreen trees in lawn areas, and ornamental trees, shrubs and grasses as foundation plantings along the building, as well as native plants in the stormwater biofilters.

B. Observations
 1. Landscaping that was installed as part of the construction project has had minimal maintenance. Pruning and removal/replacement of dead plants should be addressed.

C. Recommendations
 1. Replace dead shrubs (map grid B2)
 2. Remove Walnut trees from the landscape bed(s) (map grid B3).

UTILITIES

A. Existing Data
 1. Site utilities include water service, irrigation, sanitary and storm sewer and biofilters for stormwater treatment.

B. Observations
 1. Most utility structures that could be observed appeared to be in good working order.
2. The biofilter by the sign was originally not constructed correctly and has continued to degrade (map grid A1).

3. The drainage swale that directs the stormwater from the south parking area to the biofilter tends to hold water and grass is difficult to establish (map grid A4).

C. **Recommendations**

1. Rebuild biofilter.

2. Install 36” concrete gutter in drainage swale area to improve drainage and ease maintenance.
A. Existing Data

1. Water heating equipment is gas fired instantaneous water heating equipment. 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The building is served by a single Hillenbrand water softener. The water softener is softening domestic HW and CW.

3. Plumbing fixtures are in good operational condition. WCs are wall hung sensor flush valve, URs are floor mount with sensor flush valves, wash fountains have sensor operation.

4. Domestic Water service is 6” with a 3” meter and backflow preventer for CW to HVAC chillers. There is a separate water meter for the Domestic water to the building and a backflow preventer for lawn irrigation.

5. Water Piping is CPVC with brass valves.

6. There is a 6” Water service for Fire Protection System.

7. The Building is fully sprinklered.

B. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The sanitary, storm and water piping systems are functioning properly.
3. Water piping system is functioning properly. Valves will need to be replaced as system ages.

C. Recommendations
1. Instantaneous water heating equipment is required to be maintained for scale build up on a regular basis.
2. Other Equipment will require an annual review of condition and minor ongoing maintenance as needed.

D. Expected Remaining Lifespan
1. Water heating equipment is expected to last 10 years.
2. Water softening equipment should be viable for another 10 years.
3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair/replacements required due to usage, an example would be the grease interceptor.
4. Plumbing fixtures/faucets/flush valves will require ongoing minor maintenance/replacement as needed.
5. Water piping system should have a 20+ year useable life. Valves may require replacement as they age.

E. Specific Areas of Concern
1. None
HVAC

The following report is the result of a site visit by Randy All, Fredericksen Engineering, Inc. that occurred on April 1st, 2021 to update previous visits that occurred on August 2nd, 2013 and March 2nd, 2018. Site observations were used in the preparation of this report.

A. Existing Data

1. The building heating system consists of two (2) Thermal Solutions high-efficiency condensing hot water boilers. One boiler is rated at 2,910,000 btu output while the second boiler is rated at 1,900,000 btu output. The pumping system is a primary-secondary arrangement with variable flow system pumps. Each boiler is served by an inline primary pump while the system main and stand-by pumps are piped in parallel in the secondary loop. The system pumps are each served by a variable frequency drive to modulate the system flow based on building load conditions.

2. The building cooling is provided by a 150 ton Multi-Stack water-cooled modular chiller. The original 100 ton portion of the chiller was in installed in 2007 as part of an HVAC renovation project. An additional 50 ton module was added on as part of the 2015 building addition and renovation project. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-secondary arrangement with a single constant flow chiller primary pump and a single variable flow system pump. The system pump is served by a variable frequency drive to modulate the system flow based on building load conditions.

3. The entire building is served by four (4) modular air handling units. The classroom areas are served by two (2) variable volume air handling units with hot water VAV boxes. The gymnasium and cafeteria areas...
are each served by individual single-zone VAV air handling units. All of the air handling systems incorporate demand control ventilation utilizing carbon dioxide sensors to modulate the amount of fresh outdoor air required to each system based on actual load conditions.

4. The building is controlled by a Schneider Electric direct digital control system that was installed as part of the 2015 building addition and renovation project.

5. Bipolar ionization air purification systems were recently installed within all air handling equipment.

B. Observations

1. The entire HVAC system was installed new in 2015 and is in excellent condition.

2. The Owner noted some apparent issues with the hot water boiler plant control and system flow. A report that was generated by Bernie Buchner Mechanical was provided to the Engineer for review.

C. Recommendations

1. Continue to maintain the existing HVAC system and the Schneider Electric digital control system. We recommend maintaining the software with the latest updates to keep the system current.

2. After review of the report from Bernie Buchner Mechanical, we have several recommendations:

 a. Verify the pump flow rates for each of the two boiler pumps. According to the data provided, the pumps appear to be underperforming with respect to flow rate. The pump flow rates should be 150 gpm and 100 gpm respectively. According to the water temperature drops that were measured, the flow rates appear to be lower than the original design documents from 2015 and balancing reports from 2016 each indicated.
b. Verify that the boiler venting was installed per the boiler manufacturer’s requirements. The original design documents required that the venting be installed per the boiler manufacturer’s specific requirements.

c. Verify with the boiler manufacturer that the factory pre-piped pump and three-way control valve assembly was installed properly at the factory. The technician from Bernie Buchner Mechanical felt that it was not. This needs to be verified by a certified factory technician from Thermal Solutions.

3. The reported system minimum flow issue that occurs during periods of light system loads could be addressed in a couple of different ways:

a. During these periods of light load (typically in spring and fall), initiate a control program that automatically makes the smaller boiler the lead boiler. This boiler has the smaller 100 gpm boiler pump. Currently, the system has about 75 gpm of bypass capacity built into the design, but the 325 gpm system pump will likely only modulate down to about 100 gpm when its respective variable frequency drive is at its minimum setting. The additional 25 gpm of flow needed to achieve this 100 gpm minimum flow rate could be gotten by opening the control valves on air handling units AC-3 and AC-4 about 10%.

b. As an alternative, a small system bypass control valve and system flow meter could be installed to ensure that the system flow rate does not drop down below 100 gpm. This would require a 2” bypass line to be installed in the hot water piping system between the supply and return mains. The flow meter would be installed on the discharge side of the system pumps before any branch takeoffs to ensure that it is reading the entire system flow.
ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group, LLC that occurred on June 21, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

MAIN ELECTRICAL SERVICE

A. Existing Data

1. This school has a 2000 amp 480Y/277 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The exterior C/T cabinet is located adjacent to the building service transformer. The meter socket is mounted on the C/T cabinet. The main switchboard is located inside in the basement by the Gymnasium. The main service switchboard consists of a 2000 amp electronic circuit breaker, a distribution section for the branch feeders. There is space available for several spare circuit breakers. The main switchboard has surge protection.

B. Observations

1. Excellent condition

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main service switchboard is about 32-35 more years.
PANELBOARDS

A. Existing Data
 1. The panelboards are Square ‘D’.
 2. Panelboards are located throughout the school and have plenty of spare circuit breakers and blank spaces for additional circuit breakers to be added.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the panelboards is about 32 - 35 more years.

GENERATOR

A. Existing Data
 1. This building has a 150 KW, 480/277 VAC ‘Generac’ natural gas fueled generator. The generator is liquid cooled. The generator is located outside.
 2. There are Two (2) automatic transfer switches. One is for ‘life-safety’ branch, the other is for Equipment branch.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. 30 plus years
A. Existing Data

1. The classrooms have 2x4 LED lay-in fixtures. LED Room Controllers connected to the building computer Network system. Two (2) dimming switches, occupancy sensor and daylight sensing for energy efficiency and automatic shutoff.

2. The corridors have 2x2 LED fixtures connected to several digital programmable lighting control panels strategically located throughout the building. There is night lighting through-out the building. Emergency Egress lighting is connected to the Life Safety branch of the emergency generator system.

3. Exterior building perimeter and parking lots are LED lighting fixtures. They are connected to several lighting control panels located through-out the building. Fixtures are programmed to energize from dusk to dawn, and/or from dusk to automatic time off.

4. The entire building has energy efficient LED lighting and digital programmable lighting controls networked to the building computer system.

B. Observations

1. Excellent condition

C. Recommendations

1. For Specialized Instruction areas such as Special Education, Children’s Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.50/sq.ft.

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the interior light fixtures is about 20 plus more years.
WIRING DEVICES

A. Existing Data
 1. The receptacles and toggle switches are commercial grade 20A with stainless steel plates.
 2. Several receptacles on each wall in each classroom with 2-20 amp. Branch-circuits minimum.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the wiring devices is about 25 plus more years.

FIRE ALARM SYSTEM

A. Existing Data
 1. The fire alarm is an EST3X addressable Voice Evac system.
 2. There are addressable pull stations by all exterior doors.
 3. There are ceiling mounted speaker strobe devices in the corridors and classrooms.
 4. There are smoke detectors in storage rooms. There are heat detectors in mechanical rooms.
 5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
 6. All fire alarm cabling is installed in EMT conduit.
 7. The building is sprinklered.
B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the fire alarm system is about 20 plus more years.

CLOCK SYSTEM

A. Existing Data
 1. There is a Rauland wireless synchronized clock system.
 2. There are Rauland 13” analog clocks in the classrooms, corridors, offices, and other public areas. There are 16” analog clocks in the gymnasium and Commons areas.
 3. The bell tone is controlled by the master clock controller

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the clock system is about 20 plus more years.
CLASSROOM SOUND REINFORCEMENT SYSTEM

A. Existing Data
 1. There is a Rauland Classroom Sound Reinforcement System.
 2. Each Classroom consists of the following main components: Main Control Unit, Receiver Module, Power Supply, Microphone Kit, Battery Charger and Ceiling Speakers.

B. Observations
 1. School Personnel reported unsatisfactory results with the Rauland System.

C. Recommendations
 1. Modify/Update or replace the existing Rauland System with ‘Light-Speed’ Manufacturer. The School District has reported good experience with ‘Light-Speed’. Budget $1,500 for each classroom.

D. Expected Remaining Lifespan
 1. Not applicable

INTERCOM SYSTEM

A. Existing Data
 1. There is a Rauland Telecor intercom system.
 2. There are recessed ceiling mounted intercom speakers in the corridors and classrooms.
 3. The intercom is accessed through the phone system.
 4. The bell system is toned through the intercom speakers

B. Observations
 1. Excellent condition
C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the intercom system is about 30 plus more years.

PHONE SYSTEM

A. Existing Data
 1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

B. Observations
 1. Excellent condition
 2. Additional phones can be added to the system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the Mitel 3300 IP phone system is about 10 plus more years.

DATA SYSTEM

A. Existing Data
 1. There is a MDF data rack and several IDF rooms throughout the building.
 2. The IDF data racks are connected to the MDF data rack with fiber optic cable and Copper backbone cables. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.
 3. The data cable is CAT6 plenum rated which is routed to patch panels in the data racks.
4. The patch panels in the data racks are CAT6.

5. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of 1 access point per classroom. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

6. There is a rack mounted UPS.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the CAT6 data cable is about 12-15 more years.
 2. The expected remaining lifespan of the network equipment is about 10 plus more years.

SECURITY SYSTEM

A. Existing Data
 1. There is a Honeywell security system. The system includes a main control panel, several motion and break-glass sensors, exterior door contacts and entry keypads installed throughout the building. The system is expandable if needed.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 15-20 more years.
CCTV SYSTEM

A. Existing Data
 1. There is a server based IP CCTV system used throughout all the buildings in the district.
 2. There are interior and exterior fixed color IP cameras.
 3. Current Network recorder has the capability of recording for 30 days.
 4. There are several cameras located throughout the interior and exterior of the building.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the CCTV system is about 10 plus more years.

ACCESS CONTROL SYSTEM

A. Existing Data
 1. There is an RS2 System door access control system installed for the District in 2015 - 2016.
 2. All the exterior doors have fob entrance readers where desired and the doors without fob readers have magnetic contact switches for monitoring.

B. Observations
 1. Excellent condition

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the access control system is about 15 – 20 more years.
Current Northern Hills Elementary Items

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Date Entered</th>
<th>Key Description</th>
<th>Reason</th>
<th>Description</th>
<th>Estimated Cost</th>
<th>Action Date</th>
<th>Priority Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-0040</td>
<td>2/15/2018</td>
<td>ADA Upgrade</td>
<td>ADA/Security</td>
<td>Rework & modify entrance system to enhance ADA access and security.</td>
<td>$6,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>NH-0042</td>
<td>4/14/2016</td>
<td>Install outdoor playground fence</td>
<td>Safety</td>
<td>Install fence along east avenue $25/ft @ 433’</td>
<td>$18,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NH-0044</td>
<td>3/21/2019</td>
<td>Add exterior lighting</td>
<td>Safety/Security</td>
<td>Add light for gazebo area</td>
<td>$6,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>NH-0045</td>
<td>4/2/2019 7/12/2021</td>
<td>Re-roof old part of roofing system</td>
<td>Maintenance</td>
<td>Re-roof area that was not completed during the 2015 remodel</td>
<td>$165,000</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

2018 & 2021 Assessment Items

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Date Entered</th>
<th>Key Description</th>
<th>Reason</th>
<th>Description</th>
<th>Estimated Cost</th>
<th>Priority Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-0049</td>
<td>7/13/2021</td>
<td>Update Rauland System</td>
<td>Update</td>
<td>Update or replace current Rauland classroom sound reinforcement system with “Light Speed” manufacturer.</td>
<td>$1,500 ea. classroom</td>
<td>TBD</td>
</tr>
<tr>
<td>NH-0050</td>
<td>7/12/2021</td>
<td>Biofilter landscaping is damaged, A1</td>
<td>Maintenance</td>
<td>Repair the damage to the mulch and to the drain. Install 36” concrete gutter in drainage swale</td>
<td>$19,000</td>
<td>2</td>
</tr>
<tr>
<td>NH-0051</td>
<td>7/12/2021</td>
<td>Install apron at snow storage area</td>
<td>Maintenance</td>
<td>Install apron at snow storage area with drain connected to storm sewer (approx. 100ft of storm sewer)</td>
<td>$20,000</td>
<td>2</td>
</tr>
<tr>
<td>NH-0052</td>
<td>7/12/2021</td>
<td>Repair fence at softball field</td>
<td>Maintenance</td>
<td>Repair fence at multiple areas</td>
<td>$2,800</td>
<td>2</td>
</tr>
<tr>
<td>NH-0052</td>
<td>7/12/2021</td>
<td>Misc. landscaping</td>
<td>Maintenance</td>
<td>Refer to site assessment “landscaping”</td>
<td>$2,200</td>
<td>2</td>
</tr>
<tr>
<td>NH-0053</td>
<td>7/12/2021</td>
<td>Playground (E3)</td>
<td>ADA Compliance</td>
<td>Install ADA access to playground area (E3)</td>
<td>$1,300</td>
<td>2</td>
</tr>
<tr>
<td>NH-0054</td>
<td>7/12/2021</td>
<td>Boiler and flow issues</td>
<td>Engineering</td>
<td>Address issues expressed as design flaws, equipment failure, or improperly setup per specs</td>
<td>$$$-$$$$</td>
<td>1</td>
</tr>
</tbody>
</table>
Riders Club Road Site & Activities Building
Onalaska, WI 54650

BUILDING DATA:

<table>
<thead>
<tr>
<th>Building Area</th>
<th>Enclosed</th>
<th>1,530 SF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Building Occupancy Classification</td>
<td>Assembly – A-3</td>
<td></td>
</tr>
<tr>
<td>Construction Type</td>
<td>Type III</td>
<td></td>
</tr>
<tr>
<td>Fire Protection</td>
<td>Non-Sprinklered</td>
<td></td>
</tr>
<tr>
<td>Construction Projects/Dates</td>
<td>1999 Original Construction</td>
<td></td>
</tr>
</tbody>
</table>
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on May 6th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data

1. The Activities Building was constructed in 1999 as a support facility for the athletic fields located on the Riders Club Road site. The building design includes two separately enclosed ‘pods’ housing men’s and women’s toilet rooms in the west pod, and concessions and equipment storage in the east pod. The building is unheated and typically unoccupied. The east pod was planned as a concessions serving room with counter service.

2. Walls are masonry concrete block.

B. Observations

1. The masonry walls remain in good condition. Exterior was recently repainted.

C. Recommendations

1. None at this time

BUILDING ENVELOPE: WINDOWS

A. Existing Data

1. Windows are glass block.

B. Observations

1. Windows remain in good condition.

C. Recommendations

1. None at this time
BUILDING ENVELOPE: DOORS

A. Existing Data
 1. All existing doors are hollow metal. The doors have lever handled latch sets for ADA accessibility.
 2. The east side pod includes two overhead coiling counter doors.

B. Observations
 1. Overhead coiling counter doors have minimal damage.
 2. Rain drip edge is coming off at storage double doors.

C. Recommendations
 1. Continue use of overhead coiling counter doors but consider installation of protective steel grilles to reduce the potential ongoing damage.
 2. Rain drip needs to be reattached.

BUILDING ENVELOPE: ROOF

A. Existing Data
 1. The roof system consists of asphalt shingles over engineered wood joists with plywood sheathing.
 2. Asphalt shingled roofing was replaced in 2015.
 3. The roof edge fascia and exposed exterior ceiling soffits are of prefinished metal.

B. Observations
 1. Roof remains in good condition.
 2. Fascia and soffits remain in good condition.

C. Recommendations
 1. None at this time
BUILDING INTERIOR: FLOORING

A. Existing Data
 1. All interior floors are of exposed sealed concrete slab.

B. Observations
 1. Floor finish could be improved.
 2. Tile base is chipped in various areas.

C. Recommendations
 1. Floor could be re-sealed but does not require immediate attention.
 2. No other recommendations at this time.

BUILDING INTERIOR: WALLS/CEILINGS

A. Existing Data
 1. Interior walls are painted and unpainted concrete block.
 2. Ceilings are painted and unpainted wood.

B. Observations
 1. Overall, interior surfaces are in good condition.

C. Recommendations
 3. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
 1. Site provides accessible routes.

B. Recommendations
 1. None at this time
A. Existing Data / Observations

1. Where parking is provided, accessible parking spaces shall be provided as follows:
 a. Total parking spaces provided: 101–150
 b. Required number of accessible spaces: 5
 c. Van accessible spaces shall be provided for every eight (8) accessible stalls.

2. The existing east side parking lots include a total of 143 spaces. There are currently 5 designated handicap parking stalls.

B. Recommendations

1. Restripe one (1) van accessible stall with adjoining access aisle.

2. If necessary, install post-mounted signs at each handicap accessible stall with special designated sign for van accessible space.

A. Existing Data / Observations

1. Access to the toilet rooms and multi-purpose room comply with the door hardware ADA guidelines.

B. Recommendations

1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data
 1. ADA toilet rooms are provided within the building.

B. Observations
 1. Toilet rooms are not completely compliant with current ADA guidelines.
 2. Vertical 18” grab bar missing in ADA stall.

C. Recommendations
 1. Toilet rooms comply with previous ADA guidelines when building was completed. No work is recommended at this time to update toilet facilities.

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. ADA compliant signage is provided.

B. Recommendations
 1. None at this time
RIDERS CLUB ROAD SITE & ACTIVITIES BUILDING - EXISTING FLOOR PLAN

RIDERS CLUB ROAD FLOOR PLAN

SCHOOL DISTRICT OF ONALASKA

NORTH

VANTAGE ARCHITECTS INC.
SITE

The following report is the result of site visits by Jeff Moorhouse, Paragon Associates, that occurred on 5-6-21, and 6-19-21. Site observations were used in the preparation of this report.

OVERVIEW

The Riders Club Road Athletic Fields site is an almost 37 acre site with three soccer fields, two baseball fields, an activities building, and parking lot. The site is in relatively good condition.

SIDEWALKS

A. Existing Data
 1. The site is surrounded by public sidewalks on two sides – Riders Club Road and East Avenue.
 2. There is a short concrete sidewalk connecting the parking lot to the shelter.
 3. There is an asphalt trail that connects the parking lot to the Omni Center to the west.

B. Observations
 1. In general, the sidewalks are in good condition.

C. Recommendations
 Continue to monitor and repair any cracked or lifted sidewalks.
PARKING

A. Existing Data
 1. There is an asphalt parking lot north of the soccer fields, accessed from East Avenue North.

B. Observations
 1. There are two low areas in the paving. (map grid I11)
 2. ADA parking requires signage (map grid I10)

C. Recommendations
 1. Cut out and replace base/paving in the two low areas (map grid I11).
 2. Install ADA signage (map grid I10)

PLAYGROUNDS

A. Existing Data
 1. There are no playgrounds at the Riders Club Road Athletic Fields. See “FIELDS” section for all athletic facilities.
A. Existing Data

1. There are three soccer fields at this site, with the west field being the game field. This field has bleachers, lighting, a score board and player enclosures.

2. The site has two baseball fields that are currently being used by the VR and JV (?) teams. Both fields have backstops, dugouts and fencing. The eastern field also has a press box, bleachers, and bullpens. There are two batting cages between the fields.

B. Observations

1. There are quite a few areas along both Riders Club Rd. and East Ave. N. where the fence needs to be repaired and wire ties are missing from posts (map grid D6-12 and D-H14)

2. There are end caps missing from end posts and most of the gates (map grid D6, E14, H14, H12, H11, H9, H8)

3. Eastern baseball field – the back (west) side of the 3rd base dugout wall is in need of repair (map grid J6)

C. Recommendations

1. Repair fence and replace wire ties that are missing from posts map grid (D6-12 and D-H14)

2. Replace missing end caps (map grid map grid D6, E14, H14, H12, H11, H9, H8)

3. Repair dugout wall (map grid J6)
LANDSCAPING

A. Existing Data
 1. Landscaping consists of street trees along Riders Club Road, minimal shade trees next to the eastern baseball field, evergreens along the outfield line of the eastern baseball field, and a wooded area along the western edge of the site.

B. Observations
 1. The “In Memory of Kirk Gunderson” tree has not been maintained as a single trunk.

C. Recommendations
 1. Prune the “In Memory of Kirk Gunderson” tree to have a single trunk. The branch to the NW and the branch to the SW should be removed.
 2. Continue to monitor landscaping and remove dead or diseased branches or plants/trees.

UTILITIES

A. Existing Data
 1. Site utilities include water service, irrigation, and sanitary and storm sewer.

B. Observations
 1. There are several locations where there are broken valve box covers (map grid H12 and G12)
 2. There are multiple areas where it appears the irrigation system is not working correctly (map grid H13, D12, and L9)
 3. Light pole is missing light fixture (map grid H6)
C. Recommendations

1. Replace broken valve box covers (map grid H12 and G12).

2. Check the irrigation system in the above noted areas. Verify heads are popping up. Repair or readjust areas (map grid H13, D12, and L9).

3. Replace fixture on light pole (map grid H6).
PLUMBING

The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data

1. Plumbing fixtures were replaced in 2020 due to a freezing condition.

2. Plumbing fixtures are in good operational condition. WCs are wall hung sensor operated flush valve, URs are floor mount with sensor flush valves. Lavatories have manual faucets.

B. Observations

1. The Sanitary and water piping systems are functioning properly.

C. Recommendations

1. Fixtures/Equipment will require an annual review of condition and minor ongoing maintenance as needed.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 10 years.

2. Sanitary piping system should have an unlimited lifetime, there will be some minor repair/replacements required due to usage or freezing condition.

3. Water piping system should have a 20 year useable life. Valves may require replacement as they age.

4. Plumbing fixtures/faucets/flush valves will require on going minor maintenance/replacement as needed.

E. Specific Areas of Concern

1. None
ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

ELECTRICAL SERVICE AND PANELBOARDS

A. Existing Data

1. Electric Service #1: 200 Amp., 120/208VAC, 3-Phase, 4-Wire service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of a 200-amp main circuit breaker. The panelboard is General Electric. There are few spaces available for future circuit breakers. This service feeds the concession, storage and mechanical rooms. There is a 125 amp., 120/208VAC, 3-Phase, 4-Wire General Electric sub-panelboard located in the Mechanical room with several spaces available for future branch-circuits.

2. Electric Service #2: 225 amps., 480/277VAC, 3-Phase, 4-Wire service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of a 225amp main circuit breaker. The panelboard is Square ‘D’. There are several spaces available for future circuit breakers. This service primarily feeds the Athletic Fields lighting system.

B. Observations

1. The panelboards are in good operating condition.

C. Recommendations

1. None
D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main distribution panelboard is about 20-25 more years.

LIGHTING FIXTURES AND CONTROLS

A. Existing Data

1. In the Storage Area there are 2-lamp fluorescent strip lights with electronic ballasts and T8 lamps.
2. In the Concession Area there are 2-lamp fluorescent ‘wrap’ around with electronic ballasts and T8 lamps.
3. In the Mechanical Room there are 2-lamp fluorescent strip lights with electronic ballasts and T8 lamps.
4. The Exterior fixtures are LED wallpacks and were installed in 2017.
5. In the Restrooms there are 2-lamp fluorescent ‘vandal proof’ lights with electronic ballasts and T8 lamps.

B. Observations

1. The exterior lighting fixtures are LED and are in excellent working condition.
2. The interior lighting fixtures are fluorescent and installed with the original building construction.
3. There are occupancy sensors in the Restrooms.

C. Recommendations

1. Replace interior fluorescent lighting fixtures with new energy efficient LED lighting fixtures. Budget - $7,000.

D. Expected Remaining Lifespan

1. 0 – 10 years.
WIRING DEVICES

A. Existing Data
 1. There are 15 amp., and 20 amp. receptacles and toggle switches with metal cover plates.

B. Observations
 1. The receptacles and toggle switches are adequate and in good working condition.
 2. The Concession Area has G.F.C.I. protection.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. 10-15 more years

PHONE SYSTEM

A. Existing Data
 1. There is phone service into the building in the Mechanical room area.

B. Observations
 1. No phone or data jacks installed in the building.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. Not applicable

MISCELLANEOUS

A. Recommendations
 1. Provide an electric wall heater in the Mechanical room to prevent water pipes from freezing. Budget - $500.00
2021 School District of Onalaska: Long Range Planning Study

Riders Club Road Site & Activities Building

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Date Entered</th>
<th>Key Description</th>
<th>Reason</th>
<th>Description</th>
<th>Est. Cost</th>
<th>Action Date</th>
<th>Priority Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-0002</td>
<td>10/10/2013</td>
<td>ADA parking stall signage.</td>
<td>ADA</td>
<td>Install (5) handicap accessible automobile parking stall signs and one (1) ‘van accessible’ label.</td>
<td>$1,500</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>RC-0003</td>
<td>3/4/2014</td>
<td>Irrigation</td>
<td>Operational</td>
<td>Install irrigation for the 2nd baseball field</td>
<td>$20,800</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>RC-0011</td>
<td>3/8/2018</td>
<td>Hole in pipe, See site plan location H-7</td>
<td>Maintenance</td>
<td>Shorten pipe 8’ and replace riprap with Turfstone Pavers (available from Menards) pavers are 24” x 16” so 6 units would cover 32”x72”.</td>
<td>$2,000</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>RC-0012</td>
<td>4/3/2018</td>
<td>Upgrade interior lighting to LED</td>
<td>Upgrade System</td>
<td>Replace existing fluorescent lighting with LED.</td>
<td>$8,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>RC-0014</td>
<td>7/12/21</td>
<td>Repair low spots in parking lot paving</td>
<td>Maintenance</td>
<td>Patch and repair sunken spots in existing paving</td>
<td>$1,900</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>RC-0015</td>
<td>7/12/21</td>
<td>Repair eastern baseball field west dugout wall</td>
<td>Maintenance</td>
<td>Remove rotten siding on dugout, repair with treated wood (Map Grid J6)</td>
<td>$4,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>RC-0016</td>
<td>7/12/21</td>
<td>Misc. repair and parts missing on existing fencing</td>
<td>Maintenance</td>
<td>Install end caps, repair fence, replace wire ties, and etc.</td>
<td>$1,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>RC-0017</td>
<td>7/12/21</td>
<td>Repair/adjust existing irrigation system</td>
<td>Maintenance</td>
<td>Replace missing valve box covers and adjust heads/system as needed</td>
<td>$1,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>RC-0018</td>
<td>7/12/21</td>
<td>Landscape</td>
<td>Maintenance</td>
<td>Prune 'Kirk Gunderson' tree to have a single trunk</td>
<td>$1,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
</tbody>
</table>
CENTRAL KITCHEN

705 8th Avenue North
Onalaska, WI 54650

BUILDING DATA:

Building Area

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Construction</td>
<td>4,182 SF</td>
</tr>
<tr>
<td>Kitchen Expansion</td>
<td>3,264 SF</td>
</tr>
<tr>
<td>Total</td>
<td>7,446 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification

Education/Support

Construction Type

Type II-B

Fire Protection

Non-Sprinkled

Construction Projects/Dates

<table>
<thead>
<tr>
<th>Year</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>Original Construction</td>
</tr>
<tr>
<td>1999</td>
<td>Kitchen Expansion</td>
</tr>
</tbody>
</table>
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on May 11th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data
1. The 1999 addition to the Central Kitchen was constructed as a steel framed structure of steel columns, wide flanged beams and open web steel bar joists and steel decking. The exterior walls were constructed of light-gauge steel studs clad with exterior gypsum sheathing and textured stucco.

2. The exterior metal stud walls were insulated with 5-1/2 inch R-19 batt insulation. A continuous fascia band of ribbed metal panels was applied to the wall area above the stucco surface to match the adjoining Middle School.

B. Observations
1. In general, the exterior cladding (stucco and metal panels) is in satisfactory condition.

C. Recommendations
1. None at this time

BUILDING ENVELOPE: WINDOWS

A. Existing Data
1. The windows in the kitchen consist of a thermally broken aluminum storefront framing with 1 inch insulated glass.

B. Observations
1. Windows are aged.

C. Recommendations
1. Windows are in need of replacement.
BUILDING ENVELOPE: DOORS

A. Existing Data
 1. Doors are original hollow metal doors and frames.
 2. O.H. door and frame is original hollow metal.

B. Observations
 1. With the exception of the main entrance door, all other hollow metal doors and frames are in satisfactory condition.
 2. The south O.H door is showing some signs of corrosion and typical wear.

C. Recommendations
 1. O.H. door needs repainting and new weather stripping; provide galvanized metal jambs.
 2. Rain drip above side double doors needs to be replaced.

BUILDING ENVELOPE: ROOF

A. Existing Data
 1. The roof above the original kitchen (south half) was re-roofed in 2006 as part of the Middle School re-roofing project. The work involved removal of the stone aggregate top surface, leaving the original built-up roofing plys and insulation in place.
 2. The new roof system included adding a new layer of insulation and mechanically attached 60-mil rubber membrane. The roof system was specified as to include a 20-year ‘full-system warranty’.
 3. The 1999 Central Kitchen Addition was built with steel decking. The roof system consisted of a 60-mil ballasted single-ply rubber membrane over 5 inch EPS insulation. The system included a 10-year warranty.
B. Observations

1. The 2006 re-roofing is in good condition.
2. The ballasted roof system above the 1999 Central Kitchen addition also appears in satisfactory condition with no significant signs of deterioration.

C. Recommendations

1. Continue to inspect on an annual basis for repair work associated with the perimeter parapet and roof-top curb flashings. Cut out and strip in areas as necessary to maintain weather tightness.

BUILDING INTERIOR: FLOORING

A. Existing Data

1. Flooring materials include the following:
 a. Quarry tile in the food prep areas and uni-sex toilet room
 b. Carpet in offices
 c. VCT in break room
 d. Ceramic tile women’s toilet room

B. Observations

1. Flooring appears to be well maintained with no apparent immediate need to replace or upgrade.

C. Recommendations

1. None at this time
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
CENTRAL KITCHEN

BUILDING INTERIOR: WALLS

A. Existing Data
1. Interior partitions are of metal stud and painted gypsum board.

B. Observations
1. Wall surfaces are generally in good shape.

C. Recommendations
1. None at this time

BUILDING INTERIOR: DOORS AND FRAMES

A. Existing Data
1. Interior doors are generally hollow metal doors.

B. Observations
1. Doors remain in good condition.

C. Recommendations
1. None at this time

BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data
1. The majority of the rooms have suspended acoustical tile. The prep kitchen area has a suspended 2’ x 4’ vinyl-face gypsum panel. Break room and offices have standard acoustical tile. The main storage room along the east side of the building has no suspended acoustical tile ceiling.
2. Toilet partitions in the women’s toilet room are metal.

Women’s toilet room
B. Observations
 1. Ceiling tile and grid appear to be in satisfactory condition.
 2. Metal toilet stall partitions show typical signs of years of usage.

C. Recommendations
 1. Monitor T-grid in food prep areas for any signs of corrosion.
 2. Partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.

BUILDING INTERIOR: FOOD SERVICE EQUIPMENT

A. Existing Data / Observations
 1. Overall, kitchen equipment is aging.
 2. Other old equipment that will need to be considered for replacement includes the 5-door steamer, two ovens, 2-burner stove, mixer and bread slicer.
 3. Dishwasher and grease interceptor were recently replaced in 2014.
 4. Cooler and freezer functions well.

B. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
 1. The Central Kitchen site currently provides accessible routes from the dedicated staff parking lot on the east side and from the Middle School parking areas to the south of the central kitchen.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. The existing east side parking lot includes a total of 11 spaces. There are currently no spaces designated as handicap parking stalls.
 2. The Middle School parking lot off the south side of the Central Kitchen includes designated accessible stalls, which could also be used by kitchen staff.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. The main entrance on the south side serves as the primary accessible entrance but does not include a door operator.

B. Recommendations
 1. None at this time
HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations
 1. With the exception of the delivery van loading bay, all rooms are located on one level.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data
 1. The existing toilet facilities were in compliance with the Code at the time of the 1999 kitchen addition.

B. Observations
 1. The women’s toilet room is not completely compliant with current ADA guidelines regarding grab bars and size of stalls.
 2. The uni-sex toilet room is not ADA compliant. The overall room size and location of fixtures and accessories do not meet requirements.
 3. Lavatories do not have proper covers or insulation over exposed pipes.

C. Recommendations
 1. No work is recommended at this time to update toilet facilities.

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. Building provides accessible signage.

B. Recommendations
 1. None at this time
The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data

1. Water heating equipment is gas fired instantaneous water heating equipment. 2 units provide adequate hot water for building. The units are good condition and are operating well.

2. The building is served by a small single Diamond water softener. The water softener is softening domestic HW and CW.

3. Water service is 2” K copper with a 2” meter.

4. Water piping is fed underground to the fixtures.

5. Water piping is copper.

6. This building has its own gas meter.

7. Gas is fed to the Cook line from underground.

8. Plumbing fixtures are in good operational condition.

9. There is a small in-ground grease interceptor. I do not think there is a grease interceptor for the large dishwasher.

10. There is a mix of PVC and Cast Iron drain and vent piping.

B. Observations

1. The Sanitary, storm and water piping systems are functioning properly.

2. Water piping system is functioning properly. Valves will need to be replaced as they age.

3. CI drain/vent piping in kitchen has a shortened usable lifetime due to kitchen wastes, it it typically 10-15 yrs.
C. Recommendations

1. Instantaneous water heating equipment is required to be maintained for scale build up on a regular basis.

2. Other Equipment will require an annual review of condition and minor ongoing maintenance as needed.

3. Gas piping underground in a building is not a good idea, it should be installed above ground.

4. Current code requires the large DW to flow thru a grease interceptor.

5. There does not appear to be an emergency shut-off for the gas to the equipment under the Hood.

D. Expected Remaining Lifespan

1. Water heating equipment is expected to last 10 years.

2. Water softening equipment should be viable for another 5 years.

3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair/replacements required due to usage, an example would be the grease interceptor.

4. Plumbing fixtures/faucets/flush valves will require on going minor maintenance/replacement as needed.

5. Water piping system should have a 10 year useable life. Valves may require replacement as they age.

E. Specific Areas of Concern

1. Natural gas piping underground in the building

2. Emergency Gas shut-off for gas piping in Kitchen.
The central kitchen is attached to the middle school.

ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The central kitchen is attached to the middle school.

PANELBOARDS

A. **Existing Data**
 1. There are two (2) panelboards ‘B1’ and ‘B2’, 200 Amps., 120/208VAC, 3-Phase, 4-Wire with 42 circuits each serving the Central Kitchen, they are General Electric.

B. **Observations**
 1. Panelboard ‘B1’ is full, panelboard ‘B2’ has 10 empty spaces for additional branch circuit breakers.
 2. The panelboards are in good working order.

C. **Recommendations**
 1. None

D. **Expected Remaining Lifespan**
 1. The expected remaining lifespan of the panelboards is about 20-30 more years.

LIGHTING FIXTURES AND CONTROLS

A. **Existing Data**
 1. The kitchen has a combination of 2x4 acrylic lens 2-lamp fluorescent fixtures and 1x4 acrylic lens 2-lamp fluorescent fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The light fixtures are on 8’ centers in a variety of patterns.
 2. The offices have 2x4 fluorescent fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic.
3. Exterior perimeter wall-pack fixtures, canopy and parking lot lighting were recently updated to LED in 2017.

B. Observations
1. The existing interior and exterior light fixtures are in good working order and the light levels are good also.

C. Recommendations
1. Replace existing interior fluorescent lighting fixtures with LED upon failure or during future remodel projects. $200 for each fixture.
2. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $30,000

D. Expected Remaining Lifespan
1. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

WIRING DEVICES

A. Existing Data
1. The receptacles and toggle switches are commercial grade 20A with stainless steel plates

B. Observations
1. The receptacles and toggle switches are in good working order.

C. Recommendations
1. None

D. Expected Remaining Lifespan
1. The expected remaining lifespan of the wiring devices is about 20-25 more years.
A. **Existing Data**
 1. The fire alarm control panel is an EST3 addressable system and located in the Middle School electrical room.
 2. There are pull stations by all exterior doors.
 3. There are wall mounted horn strobe devices.
 4. There are smoke/heat detectors.
 5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
 6. All fire alarm cabling is installed in conduit.

B. **Observations**
 1. The oldest notification appliances (horn/strobes) are obsolete and have reached their end of life cycle and need to be updated.

C. **Recommendations**
 1. Consider upgrading to an audio evacuation fire alarm system:
 a. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
 b. This building is not sprinklered.
 c. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary
 d. School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
 e. Budget estimate to upgrade to audio evacuation system installation - $10,000.

D. **Expected Remaining Lifespan**
 1. The majority of the system has reached its expected life expectancy and should be replaced with new.
CLOCK SYSTEM

A. Existing Data
 1. The clocks are connected to the Middle School Master Clock System. A new Master Clock Controller and clocks were installed in 2017.
 2. The bell tone is controlled by the master clock controller.

B. Observations
 1. The clocks are new and recently installed.
 2. Additional clocks can be added to the system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the clock system is about 15-20 more years.

INTERCOM SYSTEM

A. Existing Data
 1. The Central Kitchen is connected to the existing Telecor intercom system in Middle School. This system is 12 years old and was installed in 2006. The amplifier is located in the IMC storage room.
 2. The intercom is accessed through the intercom phones. The intercom is also accessed through the Mitel IP phone line which allows users with a code to perform a building page from any Mitel phone.
 3. There are recessed ceiling mounted intercom speakers.
 4. The bell system is toned through the intercom speakers.
B. Observations
 1. The intercom system is in adequate working order.
 2. Additional intercom speakers can be added.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the intercom system is about 10 - 15 more years.

PHONE SYSTEM

A. Existing Data
 1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system in the Middle School. This system was installed in 2015 - 2016.
 2. New IP phones have been installed throughout the school.

B. Observations
 1. The phone system is in good working order.
 2. Additional phones can be added to the system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the Mitel 3300 phone system is about 10 more years.
A. Existing Data
 1. There is an Ademco security system in the Middle School. The security control panel is located in the main electrical room. The security system has motion sensors.
 2. There is exterior door contact switches.

B. Observations
 1. Security system is in working order.
 2. Additional security devices can be added.

C. Recommendations
 1. Replace devices when the Middle School system is updated.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the security system is about 0-2 more years.

ACCESS CONTROL SYSTEM

A. Existing Data
 1. There is an RS2 System door access control system in the Middle School which was installed for the District in 2013 - 2014.
 2. There is an electric strike and key fob reader on the exterior door and service door.
 3. There is an Aiphone intercom system.

B. Observations
 1. The access control system is in good working order.
 2. Additional doors can be added to this system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the access control system is about 10-15 more years.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK-0001</td>
<td>10/10/2013</td>
<td>Kitchen Equipment</td>
<td>Equipment</td>
<td>Replace convection oven.</td>
<td>$21,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace Convection Oven</td>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0004</td>
<td>10/10/2013</td>
<td>Kitchen Equipment</td>
<td>Equipment</td>
<td>New bread slicer.</td>
<td>$16,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace bread slicer.</td>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0005</td>
<td>10/10/2013</td>
<td>Kitchen Equipment</td>
<td>Equipment</td>
<td>Replace mixer.</td>
<td>$22,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace mixer.</td>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0006</td>
<td>10/10/2013</td>
<td>Kitchen Equipment</td>
<td>Equipment</td>
<td>Replace 2-burner range.</td>
<td>$4,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace 2-burner range</td>
<td>Replacement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0008</td>
<td>10/10/2013</td>
<td>Equipment Hook-Ups</td>
<td>Installation</td>
<td>Complete installation and hook-up of new equipment.</td>
<td>$8,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Installation Costs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0009</td>
<td>10/10/2013</td>
<td>Entrance Door Replacement</td>
<td>Maintenance</td>
<td>Replace existing hollow metal door frame and sidelite at main entrance to Central Kitchen.</td>
<td>$4,200</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace existing hollow metal door frame and sidelite at main entrance to Central Kitchen.</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0011</td>
<td>10/10/2013</td>
<td>Remodel Toilet Rooms</td>
<td>Remodeling for Code issues</td>
<td>Remodel existing toilet rooms to comply with the current ADA guidelines for handicap accessibility.</td>
<td>$32,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Remodel existing toilet rooms to comply with the current ADA guidelines for handicap accessibility.</td>
<td>Maintenance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0012</td>
<td>03/08/2018</td>
<td>Replace Cast iron drain piping</td>
<td>Poor condition</td>
<td>Install when remodeling the Kitchen</td>
<td>$57,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Replace Cast iron drain piping</td>
<td>Poor condition</td>
<td>Install when remodeling the Kitchen</td>
<td>$57,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>CK-0013</td>
<td>03/08/2018</td>
<td>Install Gas Panic shut off Valve at kitchen</td>
<td>NFPA Code</td>
<td>Shuts off Gas to KEQ under Hood</td>
<td>$5,800</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Install Gas Panic shut off Valve at kitchen</td>
<td>NFPA Code</td>
<td>Shuts off Gas to KEQ under Hood</td>
<td>$5,800</td>
<td>7/12/2021</td>
<td>1</td>
</tr>
<tr>
<td>CK-0014</td>
<td>03/08/2018</td>
<td>Install gas piping above floor for kitchen equipment under hood.</td>
<td>Good practice</td>
<td>Replace underground ground with above floor gas piping.</td>
<td>$8,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Install gas piping above floor for kitchen equipment under hood.</td>
<td>Good practice</td>
<td>Replace underground ground with above floor gas piping.</td>
<td>$8,500</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>CK-0015</td>
<td>03/08/2018</td>
<td>Install exterior grease interceptor</td>
<td>Plbg Code</td>
<td>Install when remodeling the Kitchen</td>
<td>$25,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Install exterior grease interceptor</td>
<td>Plbg Code</td>
<td>Install when remodeling the Kitchen</td>
<td>$25,000</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>CK-0016</td>
<td>4/03/2018</td>
<td>Upgrade Lighting fixtures to LED</td>
<td>Energy Upgrade</td>
<td>Remove existing fluorescent lighting fixtures and replace with new LED lighting fixtures. Provide programmable digital lighting controls.</td>
<td>$34,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Upgrade Lighting fixtures to LED</td>
<td>Energy Upgrade</td>
<td>Remove existing fluorescent lighting fixtures and replace with new LED lighting fixtures. Provide programmable digital lighting controls.</td>
<td>$34,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>CK-0017</td>
<td>4/03/2018</td>
<td>Upgrade fire alarm control system to Voice Evac</td>
<td>System Upgrade</td>
<td>Upgrade existing fire alarm system to Voice Evac to match what is installed at Northern Hills Elementary School.</td>
<td>$11,500</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>7/12/2021</td>
<td>Upgrade fire alarm control system to Voice Evac</td>
<td>System Upgrade</td>
<td>Upgrade existing fire alarm system to Voice Evac to match what is installed at Northern Hills Elementary School.</td>
<td>$11,500</td>
<td>7/12/2021</td>
<td>3</td>
</tr>
<tr>
<td>CK-0018</td>
<td>7/12/21</td>
<td>Window Replacement</td>
<td>Replacement</td>
<td>Replace with new aluminum windows</td>
<td>$12,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Window Replacement</td>
<td>Replacement</td>
<td>Replace with new aluminum windows</td>
<td>$12,000</td>
<td>7/12/2021</td>
<td>2</td>
</tr>
<tr>
<td>CK-0019</td>
<td>7/12/21</td>
<td>O.H. Door Maintenance</td>
<td>Maintenance</td>
<td>Repaint O.H. door, install new weather stripping, provide new galvanized metal jambs, and replace rain drips</td>
<td>$2,200</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
DISTRICT OFFICE

DISTRICT OFFICE
237 2nd Avenue South
Onalaska, WI 54650

BUILDING DATA:

Building Area
Central Office 11,200 SF

Building Occupancy Classification
Business - B

Construction Type
Type II-B

Fire Protection
Non-Sprinklered

Construction Projects/Dates

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>----</td>
<td>Original Construction</td>
</tr>
<tr>
<td>2017</td>
<td>Building Renovation</td>
</tr>
</tbody>
</table>
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
DISTRICT OFFICE ANNEX

DISTRICT OFFICE ANNEX
237 2nd Avenue South
Onalaska, WI 54650

BUILDING DATA:

- **Building Area**: Annex 2,572 SF
- **Construction Type**: Type II-B
- **Fire Protection**: Non-Sprinklered
- **Construction Projects/Dates**: ---- Original Construction
ARCHITECTURAL

The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on June 15th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data
 1. The remodeling of the Festival Support Center building involved minimal modifications to convert to the new District Office. Exterior walls consist of face brick and EIFS.

B. Observations
 1. Exterior walls appear to be in satisfactory condition except the northeast and east wall where there is a lack of insulation and wall/foundation cracking.

C. Recommendations
 1. Repair northeast and east walls that show deterioration and cracking, as well as reinsulate.

BUILDING ENVELOPE: WINDOWS

A. Existing Data
 1. Windows are aluminum storefront.
 2. The remodeling included the installation of three new thermal design aluminum windows at the south wall.

B. Observations
 1. Windows remain in good condition.

C. Recommendations
 1. None at this time
BUILDING ENVELOPE: DOORS

A. Existing Data
 1. Exterior doors are aluminum storefront and hollow metal doors and frames.

B. Observations
 1. Doors remain in good condition.

C. Recommendations
 1. None at this time

BUILDING ENVELOPE: ROOF

A. Existing Data
 1. The entire building was re-roofed and involved a total tear-off of the existing roofing down to the wood deck. HVAC curbs and plumbing vents were raised.
 2. The entire roof was covered with tapered EPS (Avg. R=18). New membrane consists of a fully-adhered 60 mil single-ply rubber.
 3. Metal cap flashing was replaced on north wall. New gutters and downspouts were installed.

B. Observations
 1. Roofing remains in good condition.
 2. Metal cap flashing, gutters and downspouts remain in good condition.

C. Recommendations
 1. None at this time
BUILDING INTERIOR: FLOORING

A. Existing Data
 1. Flooring materials consist of carpet and ceramic tile.

B. Observations
 1. Flooring remains in good condition.

C. Recommendations
 1. None at this time

Main lobby

BUILDING INTERIOR: WALLS

A. Existing Data
 1. Interior walls are a combination of wood stud and metal stud with gypsum board finish.

B. Observations
 1. Walls remain in good condition.

C. Recommendations
 1. None at this time

Typical interior walls

BUILDING INTERIOR: DOORS AND FRAMES

A. Existing Data
 1. Interior doors are solid core wood doors and wood frames.

B. Observations
 1. Doors and frames remain in good condition.

C. Recommendations
 1. None at this time

Wood door and frames
BUILDING INTERIOR: MISCELLANEOUS FINISHES

A. Existing Data / Observations

1. Finishes throughout the building are in overall good condition.
2. Acoustical tile ceilings remain in good condition.
3. Casework remains in good condition.

B. Recommendations

1. None at this time

BUILDING SPACES: OFFICE SPACE

A. Existing Data

1. District nurses are currently located in the previous Pupil Services at Irving Pertzsch due to lack of space in the district office.
2. Data services are located in the district office.

B. Observations

1. District office does not have adequate office space for all district staff or additional future staff.

C. Recommendations

1. Shortcomings of this area will be reviewed with the overall design study for the district office to provide additional office space for staff.
HANDICAP ACCESSIBILITY: ACCESSIBLE ROUTES

A. Existing Data / Observations
 1. Site provides accessible routes.

B. Recommendations
 1. None at this time

Accessible routes along site

HANDICAP ACCESSIBILITY: ACCESSIBLE PARKING

A. Existing Data / Observations
 1. Site provides accessible parking at entry.

B. Recommendations
 1. None at this time

ADA parking adjacent to main entrance

HANDICAP ACCESSIBILITY: ACCESSIBLE ENTRANCES

A. Existing Data / Observations
 1. The main entrance on the south side serves as the primary accessible entrance.

B. Recommendations
 1. None at this time

Main entrance
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
DISTRICT OFFICE

HANDICAP ACCESSIBILITY: ACCESSIBLE INTERIOR CIRCULATION

A. Existing Data / Observations
 1. All rooms are located on the main level.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE TOILET FACILITIES

A. Existing Data / Observations
 1. One set of toilet room facilities are designed to be ADA compliant.
 2. Remaining toilet facilities are original to the building are not compliant with current ADA guidelines.

B. Recommendations
 1. None at this time

HANDICAP ACCESSIBILITY: ACCESSIBLE SIGNAGE

A. Existing Data / Observations
 1. Building provides accessible signage.

B. Recommendations
 1. None at this time
The following report is the result of a site visit by Jerry Schomberg and Jessica Wang, Vantage Architects, Inc. that occurred on June 15th, 2021. Site observations were used in the preparation of this report.

BUILDING ENVELOPE: EXTERIOR WALLS

A. Existing Data / Observations
 1. The garage annex building consists of a single story exterior masonry and wood framed roof structure located across the alley from the new District Office. The east side of the annex is built back into the embankment. Minor renovations have been completed since 2017.

B. Recommendations
 1. It is suggested that a closer structural examination be considered to evaluate the lateral pressure on the east wall as a result of building back into the site embankment. Structural corrections may dictate reinforcing and buttressing the east wall if the lateral load pressures appear to be exerting soil pressure on the masonry foundation wall.
 2. Continue to monitor walls for corrective action that may require immediate attention (ex: wall cracks).

BUILDING ENVELOPE: WINDOWS

A. Existing Data
 1. There is a single glass block window.

B. Observations
 1. Window is in satisfactory condition.

C. Recommendations
 1. None at this time
BUILDING ENVELOPE: DOORS

A. Existing Data
 1. Doors are hollow metal doors and frames.
 2. O.H. door and frame are metal.

B. Observations
 1. All exterior doors and O.H. door have been recently replaced.
 2. New exterior apron completed at O.H. door.
 3. Existing man door on North side has been infilled with concrete block.

C. Recommendations
 1. None at this time

BUILDING ENVELOPE: ROOF

A. Existing Data / Observations
 1. Following the 2017 office renovation a proposal to replace the roof system was previously submitted to the District for all work associated with the re-roofing of the annex building. The work involved included removing the existing membrane down to the wood deck, raising of HVAC curbs, plumbing, vents and electrical work. The proposed action was to install a new fully-adhered rubber membrane over EPS insulation.
 2. Metal roof edge cap flashing and gravel stop flashing would have been fabricated of standard 24-ga, prefinished galvanized metal.

B. Recommendations
 1. Continue to monitor roof system for corrective action that may require attention (ex: roof leaks).
BUILDING INTERIOR: FLOORING

A. Existing Data
 1. Flooring is a combination of sealed concrete and quarry tile.

B. Observations
 1. Concrete floor at O.H. door entry has been recently leveled.

C. Recommendations
 1. None at this time

BUILDING INTERIOR: WALLS

A. Existing Data
 1. Walls are a combination of concrete block and FRP finish.

B. Observations
 1. Recently updated wall/opening at receiving area adjacent to unit heater.

C. Recommendations
 1. None at this time

BUILDING INTERIOR: DOORS AND FRAMES

A. Existing Data
 1. Interior doors and frames are wood.

B. Observations
 1. Doors removed from previous cooler room and left hand side toilet room.

C. Recommendations
 1. None at this time
District Office Floor Plan
SITE

The following report is the result of site visits by Jeff Moorhouse, Paragon Associates, that occurred on 6-20-21. Site observations were used in the preparation of this report.

OVERVIEW

The District Office and Annex site consists of a single-story building, an adjacent storage building, and large parking lot. The site is in good condition.

SIDEWALKS

A. Existing Data

1. There are both concrete and unit paver public sidewalks adjacent to the site along Highway 35, as well as concrete public sidewalks on Hickory and 3rd Avenue South.

2. There is a small concrete sidewalk at the entrance to the building, as well as an area with unit pavers to the south and west of the entrance.

B. Observations

1. The sidewalks all appear to be in good condition at this time.

C. Recommendations

1. Continue to monitor the sidewalks and correct any cracked or lifted sidewalks.
PARKING

A. Existing Data
 1. The main parking area is directly south of the District building with two driveways onto Highway 35 and additional access through the alley to the east.
 2. There is a paved asphalt area between the alley and the annex on the northeast corner of the site.

B. Observations
 1. The paved areas appear to be in serviceable condition at this time.
 2. The striping in the main parking lot is white, which is difficult to see in the winter months.
 3. The retaining wall adjacent to the paved area by the annex is failing.

C. Recommendations
 1. When the parking lot is restriped next, yellow striping is preferred for visibility.
 2. Continue to monitor conditions of paving and make any needed corrections.
 3. Replace retaining wall by the annex.

LANDSCAPING

A. Existing Data
 1. The north side of the parking lot has landscaped islands. There is a well maintained landscaped plaza at the entrance of the building.

B. Observations
 1. The landscaped areas are in good condition.

C. Recommendations
 1. Continue to monitor landscaping and remove dead or diseased branches or plants/trees. Keeping control of weed growth is important to good looking landscaping.
A. **Existing Data**
 1. Site utilities include water service, sanitary, and storm sewer.

B. **Observations**
 1. Utility structures that could be observed appeared to be in good working order.

C. **Recommendations**
 1. Continue to monitor utilities and make any needed corrections.
A. **Existing Data**

1. Water heating equipment a tank type electric unit, it provides adequate hot water for the building. The unit is good condition and is operating well.

2. The building is served by a single H125 Hillenbrand water softener. The water softener is softening domestic HW and CW.

3. Plumbing fixtures are in good operational condition.

4. Water service is 1 ½” K copper.

5. Water Piping is copper.

B. **Observations**

1. The Sanitary, storm and water piping systems are functioning properly.

2. Water piping system is functioning properly, Valves will need to be replaced as they age.

C. **Recommendations**

1. Equipment/fixtures will require an annual review of condition and minor ongoing maintenance as needed.

D. **Expected Remaining Lifespan**

1. Water heating equipment is expected to last 5 years.

2. Water softening equipment should be viable for another 10 years.

3. Sanitary and Storm Piping systems should have an unlimited lifetime, there will be some minor repair replacements required due to usage.
4. Plumbing fixtures/faucets/flush valves will require ongoing minor maintenance/replacement as needed.

5. Water piping system should have a 20 year usable life. Valves may require replacement as they age.

E. Specific Areas of Concern

1. None
PLUMBING

The following report is the result of a site visit by Bob Novak, Ring & DuChateau that occurred on 04-05-21. Site observations were used in the preparation of this report.

A. Existing Data
 1. Water heating equipment a tank type electric unit.
 2. Water service is 1" K copper.
 3. Water Piping is copper.
 4. There is a lawn irrigation system.
 5. There is a WC & sink.
 6. Sanitary is pumped up and discharges out the sidewall to the north.

B. Observations
 1. Plumbing systems are past their useful life, they will require replacement if remodeling is done.
 2. Water piping system is functional properly, Valves will need to be replaced as they age.

C. Recommendations
 1. Replacement of existing plumbing will be required if remodeling is done.

D. Expected Remaining Lifespan
 1. Plumbing is working now, any remodeling should consider all new piping and fixtures, sanitary to street is OK Water service is OK.

E. Specific Areas of Concern
 1. Replacement of all interior systems if remodeling is done.
The following report is the result of a site visit by Randy All, Fredericksen Engineering, Inc. that occurred on April 1st, 2021 to update previous visits that occurred on August 2nd, 2013 and March 2nd, 2018. Site observations were used in the preparation of this report.

A. Existing Data

1. This building was remodeled and occupied by the district in 2017. The existing HVAC equipment was left in place and reused with only the ductwork distribution systems being modified to accommodate the remodeling work. The exact age of the existing equipment is not known.

2. The building HVAC system consists of multiple system types. The administration and human resources areas are served by two (2) Carrier gas/electric packaged rooftop units. The rooftop systems utilize zone dampers to provide zone control. The facilities, data services, and pupil services areas are served by three (3) high-efficiency gas-fired furnaces with direct-expansion cooling. Two of the furnace systems utilize zone dampers for zone control while the third furnace is a single-zone unit.

3. The IT workroom is served by a ductless split system the provided heating and cooling but is not functional.

4. The server room is cooled by a primary and secondary ductless split system that was recently replaced. (2018, 2021)

5. The building is controlled by a combination of zone control systems and standalone electronic thermostats.

6. The Annex is cooled by two (2) ductless split systems that are not functional.

7. Bipolar ionization air purification systems were recently installed.
B. Observations

1. The existing RTU’s and forced air systems appear to be 15-25 years old and close to, or just past, their life expectancy. It was reported that the ability to control temperatures and humidity in the building is poor.

C. Recommendations

1. Remove the existing HVAC systems and serve the entire building utilizing two (2) VAV packaged rooftop units with hot water reheat VAV boxes served by a high-efficiency condensing boiler plant with variable flow pumping. A new digital control system would be utilized to control the building to be consistent with the current district standards.

2. Replace all HVAC equipment in Annex if this building is to be utilized.
The following report is the result of a site visit by Galileo Consulting Group LLC on September 22, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

ELECTRICAL SERVICE

A. Existing Data

1. The District Office has an 800 amp 120/208 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of an 800 amp main circuit breaker with space for additional branch feeders. This service equipment was installed in 2017. The distribution panelboard is Square ‘D’. There are spaces available for future circuit breakers.

B. Observations

1. The main Distribution Panelboard has empty spaces for additional branch circuit breakers.

2. The panelboard is new and in good working order.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the main distribution panelboard is about 30-35 more years.
PANELBOARDS

A. Existing Data
 1. There are three (3) panelboards, 225 Amps., 120/208VAC, 3-Phase, 4- Wire with 42 circuits each, they are Square ‘D’.

B. Observations
 1. Panelboards have empty spaces for additional branch circuit breakers.
 2. The panelboards are in good working order.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the panelboards is about 30-35 more years.

LIGHT FIXTURES AND CONTROLS

A. Existing Data
 1. The interior and exterior lighting fixtures are LED.
 2. There is emergency egress lighting units.
 3. The building lighting system is partially controlled by energy saving occupancy sensors.

B. Observations
 1. The existing interior and exterior light fixtures are in good working order and the light levels are good also.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the interior light fixtures is about 20-25 more years.
2021 SCHOOL DISTRICT OF ONALASKA: LONG RANGE PLANNING STUDY
DISTRICT OFFICE

WIRING DEVICES

A. Existing Data
 1. The receptacles and toggle switches are commercial grade 20A with thermo plastic cover plates.

B. Observations
 1. The receptacles and toggle switches are in good working order.
 2. There are only two duplex receptacles installed on the average in each office.

C. Recommendations
 1. Install additional duplex receptacles in each office as needed. Budget $380.00 each.

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the wiring devices is about 20-25 more years.

FIRE ALARM SYSTEM

A. Existing Data
 1. The existing fire alarm control panel was an outdated Ademco system; however, it was upgraded to an addressable Honeywell system in 2017.
 2. There are pull stations by all exterior doors.
 3. There are wall mounted horn strobe devices.
 4. There are smoke/heat detectors.
 5. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
 6. All fire alarm cabling is installed in conduit.

B. Observations
 1. The fire alarm system is new and in good working condition.

C. Recommendations
 1. None
D. Expected Remaining Lifespan
 1. 10 - 15 years

PHONE SYSTEM

A. Existing Data
 1. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system in
 the Middle School. This system was installed in 2015-2016.
 2. New IP phones have been installed through-out the school.

B. Observations
 1. The phone system is in good working order.
 2. Additional phones can be added to the system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the Mitel 3300 phone system is about 10 more years.

DATA SYSTEM

A. Existing Data
 1. There are two (2) MDF data racks located in a data room.
 2. The MDF data racks are connected with single-mode fiber optic cable. The MDF of
 all the schools in the district are connected together with single-mode fiber optic cable.
 3. The data cable is CAT5e plenum rated which is routed to patch panels in the
 data racks.
 4. The patch panels in the data rack are CAT5e.
 5. There is a UPS.

Data system
B. Observations

1. The data system is in good working order.
2. Additional horizontal runs of data cable can be added to the existing rack.
3. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the CAT5e data cable is about 7-10 more years.
2. The expected remaining lifespan of the network equipment is about 7-10 more years.

SECURITY SYSTEM

A. Existing Data

1. There is a Honeywell security system installed in 2017.
2. The security system has motion sensors and a keypad.
3. There are exterior door contact switches.

B. Observations

1. Security system is in good working order.
2. Additional security devices can be added.

C. Recommendations

1. None

D. Expected Remaining Lifespan

1. The expected remaining lifespan of the security system is about 10 - 15 more years.
CCTV

A. Existing Data
 1. There is a server based IP CCTV system used throughout all the buildings in the district.
 2. There are Five (5) interior and Three (3) exterior fixed color IP cameras. There is 30-day recording capability.

B. Observations
 1. The CCTV system is in good working order.
 2. Additional cameras can be added.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the CCTV system is about 7 more years.

ACCESS CONTROL SYSTEM

A. Existing Data
 1. There is an RS2 System door access control system which was installed for the District in 2013 - 2014.
 2. There are two (2) electric strikes and key fob readers on the main exterior doors and one in the Server Room.
 3. There is an Aiphone intercom system for the front entrance door.

B. Observations
 1. The access control system is in good working order.
 2. Additional doors can be added to this system.

C. Recommendations
 1. None

D. Expected Remaining Lifespan
 1. The expected remaining lifespan of the access control system is about 10-15 more years.
ELECTRICAL

The following report is the result of a site visit by Galileo Consulting Group LLC on September 22, 2021. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

ELECTRICAL SERVICE

A. Existing Data / Observations

1. A new 225 amp., 120/208 volt, 3-phase 4-wire feeder was installed originating from the District Office Main Distribution Panelboard and terminated at an existing fusible disconnect in the Annex building. This feeder eliminated an existing overhead service. This work was completed in 2018.

B. Recommendations

1. None

PANELBOARDS

A. Existing Data

1. There is One (1) existing Cutler Hammer panelboard, 225 Amps., 120/208VAC, 3-Phase, 4-Wire with 42 circuits. The second panelboard is a Cutler Hammer, 125 amp., 120/208VAC, 3-phase, 4-wire sub-panel with 30 circuits.

B. Observations

1. These panelboards are outdated and should be replaced with new during future remodel projects.
C. Recommendations
 1. Replace with new panelboards.

D. Expected Remaining Lifespan
 1. These panelboards have exceeded their useful life and should be replaced.

LIGHT FIXTURES AND CONTROLS

A. Existing Data
 1. The interior lighting fixtures are 4’-0”, single-lamp fluorescent ‘strip’ lights with electronic ballasts and T8 lamps.
 2. There are no emergency egress lighting units.
 3. There are no occupancy sensors or lighting controls.

B. Observations
 1. The existing interior and exterior light fixtures are outdated and should be replaced with future remodel projects.

C. Recommendations
 1. Replace with new energy efficient LED lighting fixtures and controls.

D. Expected Remaining Lifespan
 1. 0 – 3 years.
WIRING DEVICES

A. Existing Data
 1. There are 15 amp., and 20 amp. receptacles and toggle switches with metal cover plates.

B. Observations
 1. The receptacles and toggle switches are outdated and should be replaced with new. A few receptacles are broken.

C. Recommendations
 1. Replace with new.

D. Expected Remaining Lifespan
 1. The wiring devices have exceeded their expected useful life.

FIRE ALARM SYSTEM

A. Existing Data
 1. The existing outdated fire alarm control panel and system was eliminated. The building was connected to the existing fire alarm system located in the School District Office. New fire alarm devices were installed.
 2. There are new ceiling mounted horn strobe devices.
 3. There are smoke/heat detectors.
 4. All fire alarm cabling is installed in conduit.

B. Observations
 1. The fire alarm system was recently updated.

C. Recommendations
 1. Add additional devices as required per code for future construction remodeling projects.

D. Expected Remaining Lifespan
 1. 15 – 20 years.
PHONE AND DATA SYSTEM

A. Existing Data
 1. There is only One (1) phone jack and One (1) data jack in the building.

B. Observations
 1. The phone jack and cable is CAT 3.
 2. The data jack is CAT 5e.

C. Recommendations
 1. Replace with new.

D. Expected Remaining Lifespan
 1. 0 - 5 years

SECURITY SYSTEM

A. Existing Data
 1. The existing outdated Gemini security system was deleted and a new ademco system was installed.
 2. The security system has motion sensors and a keypad.
 3. There are exterior door contact switches.

B. Observations
 1. Security system was recently updated in 2018 - 2019.

C. Recommendations
 1. None.

D. Expected Remaining Lifespan
 1. 10 – 15 years.
A. **Existing Data / Observations**
 1. An electronic card/key fob was reader was recently added to the main door.
 2. There is an exterior door magnetic contact switches.

B. **Recommendations**
 1. None.

C. **Expected Remaining Lifespan**
 1. 10 – 15 years.
DISTRICT OFFICE

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-0008</td>
<td>11/8/2018 7/12/2021</td>
<td>HVAC Replacement</td>
<td>System Replacement</td>
<td>Remove the existing HVAC systems and serve the entire building utilizing two (2) VAV packaged rooftop units with hot water reheat VAV boxes served by a high-efficiency condensing boiler plant with variable flow pumping. A new digital control system would be utilized to control the building to be consistent with the current district standards</td>
</tr>
<tr>
<td>DO-0011</td>
<td>2/6/2018</td>
<td>HVAC Replacement</td>
<td>Operational</td>
<td>Replace failing A/C unit with new split system w/ heat in DS workroom or wait for full HVAC redo</td>
</tr>
</tbody>
</table>

2018 & 2021 ASSESSMENT ITEMS

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-0012</td>
<td>4/13/2018 7/12/2021</td>
<td>Building envelope</td>
<td>Maintenance</td>
<td>Seal and insulate north and east exterior walls</td>
<td>$28,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>DO-0013</td>
<td>7/12/2021</td>
<td>Parking lot</td>
<td>Maintenance</td>
<td>When parking lot is restriped next, yellow striping is preferred for visibility in winter</td>
<td>NA</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

ANNEX

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-0009</td>
<td>2/6/2018 7/12/2021</td>
<td>Garage Renovation</td>
<td>Remodel for Code Issues</td>
<td>Update MEP</td>
</tr>
</tbody>
</table>

2018 & 2021 ASSESSMENT ITEMS

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-0014</td>
<td>7/12/2021</td>
<td>Retaining Wall</td>
<td>Maintenance</td>
<td>Replace existing retaining wall with new retaining wall.</td>
</tr>
</tbody>
</table>
SITE

The following report is the result of a site visit by Jeff Moorhouse, Paragon Associates, that occurred on 07-15-21. Site observations were used in the preparation of this report.

OVERVIEW

This undeveloped parcel of land was acquired to facilitate the addition of an east side elementary school. The school was eventually built at another site (Eagle Bluff). Part of the determination for not utilizing this site was the fact that the drainage patterns and slope leave too little available developable land for a school the size of Eagle Bluff. In fact, the estimated roof and parking alone would use 100% of the developable land.

SIDEWALKS

A. Existing Data
 1. None

PARKING

A. Existing Data
 1. None.

PLAYGROUNDS

A. Existing Data
 1. None.

FIELDS

A. Existing Data
 1. None
LANDSCAPING

A. Existing Data
1. The site is upland forest and old field vegetation classes.

B. Observations
1. The site is not being maintained for any specific purpose.

C. Recommendations
1. Develop some specific educational purpose for the site such as an environmental classroom that would require significantly less site impact than a full section school.
2. Sell the property and use the funds to improve existing facilities that are being used.

UTILITIES

A. Existing Data
1. The site would have access to City of Onalaska public utilities including sanitary sewer and water.
2. Storm water drains through the site to the southwest through a series of ditches, basins and culverts.

B. Observations
1. No improvements are needed until such time as the site has a purpose related to a demand for these that exceeds the current need.

C. Recommendations
1. None as the current drainage system is working at expected levels.
ROOF REPAIR PRIORITY LEVELS

LEVEL 1

Roof repair requirements under this priority should receive immediate attention to prevent further roof leakage damage or potential roof leakage. Repair work may include patching or flashing of existing roofing, or roof membrane replacement if determined to be necessary to ensure leak protection.

LEVEL 2

Roof repair or replacement work under this level should be completed within a scheduled timetable as recommended by the District’s roofing consultant. Repair work may include patching or flashing of existing roofing, or total replacement of roof insulation and roof membrane.

LEVEL 3

Proposed work under this level can be indefinitely deferred or addressed on an ‘as-needed’ basis as conditions change. Repair or replacement work are not considered as urgent but should be monitored annually.
ONALASKA ROOF DATA SHEET

<table>
<thead>
<tr>
<th>BUILDING</th>
<th>ROOF AREA DESIGNATION</th>
<th>ROOF TYPES</th>
<th>MANUFACTURER / ROOFER</th>
<th>ROOF AREA</th>
<th>WARRANTY</th>
<th>AGE</th>
<th>REPLACEMENT PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School</td>
<td>Area HS-1</td>
<td>Ballasted EPDM</td>
<td></td>
<td>6,047 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-2</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>13,395 SF</td>
<td>2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-3</td>
<td>Ballasted EPDM</td>
<td></td>
<td>5,842 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-4</td>
<td>Ballasted EPDM</td>
<td></td>
<td>5,916 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-5</td>
<td>Ballasted EPDM</td>
<td></td>
<td>3,396 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-6</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,076 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-7</td>
<td>Ballasted EPDM</td>
<td></td>
<td>36,713 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-8</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>5,240 SF</td>
<td>2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-9</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>12,421 SF</td>
<td>2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-10</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>8,770 SF</td>
<td>2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-11</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>1,085 SF</td>
<td>2006</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-12</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,019 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-13</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,455 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-14</td>
<td>Fully-Adhered EPDM</td>
<td></td>
<td>4,448 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-15</td>
<td>Ballasted EPDM</td>
<td></td>
<td>7,861 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-16</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,682 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-17</td>
<td>Asphalt Shingles</td>
<td></td>
<td>747 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-18</td>
<td>Ballasted EPDM</td>
<td></td>
<td>28,698 SF</td>
<td>1989</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------------</td>
<td>----------------------</td>
<td>-----------------------------</td>
<td>-------------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>------</td>
<td>--------------------------</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-1</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>82,905 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-2</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>688 SSF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-3</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>672 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-4</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,784 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-5</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,603 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-6</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>8,247 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-7</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>709 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-8</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>318 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-9</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>4,445 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-10</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>8,945 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-11</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>5,311 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-12</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>440 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Central Kitchen</td>
<td>Area CK-13</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>4,413 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Central Kitchen</td>
<td>Area CK-14</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,264 SF</td>
<td>10-YR.</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------------</td>
<td>-----------------------</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-1</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>18,421 SF</td>
<td>10-YR.</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-2</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>4,850 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-3</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>5,602 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-4</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>9,553 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-5</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>4,101 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-6</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>3,061 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-7</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>1,111 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-8</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>10,740 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-9</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>955 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-10</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>955 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-11</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>6,546 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-12</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>3,884 SF</td>
<td>10-YR</td>
<td>1999</td>
<td>2</td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-1</td>
<td>Ballasted EPDM</td>
<td>Firestone/Interstate Roofing</td>
<td>8,476 SF</td>
<td>20-YR</td>
<td>2006</td>
<td>3</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-2</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>5,343 SF</td>
<td>20-YR</td>
<td>2006 / 2014</td>
<td>3</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-3</td>
<td>Foamed Urethane</td>
<td>Urethane systems</td>
<td>14,748 SF</td>
<td>Recooled</td>
<td>2013</td>
<td>2</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-4</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>8,476 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
</tbody>
</table>
2021 School District of Onalaska: Long Range Planning Study

Onalaska Roof Data Sheet

<table>
<thead>
<tr>
<th>BUILDING</th>
<th>ROOF AREA DESIGNATION</th>
<th>ROOF TYPES</th>
<th>MANUFACTURER / ROOFER</th>
<th>ROOF AREA</th>
<th>WARRANTY</th>
<th>AGE</th>
<th>REPLACEMENT PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-1</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>12,075 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-2</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>590 SF</td>
<td>10-YR</td>
<td>2003</td>
<td>2</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-3</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>1,427 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-4</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>5,202 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-5</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>2,827 SF</td>
<td>10-YR</td>
<td>2003</td>
<td>2</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-6</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>5,498 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-7</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>27,832 SF</td>
<td>10-YR</td>
<td>2003</td>
<td>2</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-8</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>8,053 SF</td>
<td>10-YR</td>
<td>2003</td>
<td>2</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-9</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>7,937 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-10</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>2,530 SF</td>
<td>20-YR</td>
<td>2003</td>
<td>2</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area IP-11</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>120 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area IP-12</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>365 SF</td>
<td>20-YR</td>
<td>2014</td>
<td>3</td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Riders Club Rd</td>
<td>Area AS-1</td>
<td>Asphalt Shingles</td>
<td></td>
<td>32.4 Squares</td>
<td>20-YR</td>
<td>2016</td>
<td>3</td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------</td>
<td>---------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>----------------------------</td>
</tr>
<tr>
<td>District Office</td>
<td>Area DO-1</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>11,043 SF</td>
<td>15 Year</td>
<td>2017</td>
<td>3</td>
</tr>
<tr>
<td>District Office Entrance</td>
<td>Area DO-2</td>
<td>Standing Seam Metal</td>
<td></td>
<td>159 SF</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>District Annex</td>
<td>Area DO-3</td>
<td>Existing EPDM</td>
<td></td>
<td>2,572 SF</td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
ONALASKA MIDDLE SCHOOL - ROOF KEY PLAN

ROOF TYPE LEGEND

B BALLASTED
SS STANDING SEAM METAL
FA FULLY-ADHERED
MA MECHANICALLY ATTACHED
FU FOAMED URETHANE

MIDDLE SCHOOL ROOF KEY PLAN

North
NORTHERN HILLS ELEMENTARY - ROOF KEY PLAN

Roof Type Key
- Ballasted EPDM
- Fully Adhered EPDM
- Standing Seam Metal

Northern Hills Roof Plan
DISTRICT OFFICE & ANNEX - ROOF KEY PLANS

District Office

District Office Annex

Roof Type Key

- **DO-1**: Fully Adhered EPDM
- **DO-2**: 154 SF
- **DO-3**: Standing Seam Metal
- **DO-3**: 2,572 SF

Roof Plan
FACILITIES CONDITIONS ASSESSMENT COST SUMMARY

<table>
<thead>
<tr>
<th>BUILDING</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School</td>
<td>$ 4,420,100</td>
</tr>
<tr>
<td>Middle School</td>
<td>$ 3,662,800</td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>$ 1,283,700</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>$ 952,900</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>$ 241,800</td>
</tr>
<tr>
<td>Riders Club Road Site & Activities Building</td>
<td>$ 42,700</td>
</tr>
<tr>
<td>Central Kitchen</td>
<td>$ 263,200</td>
</tr>
<tr>
<td>District Office and Annex</td>
<td>$ 687,000</td>
</tr>
</tbody>
</table>

TOTAL BUILDING COSTS $ 11,554,200