The intent of the 2018 *Facilities Condition Assessment* is to:

1) Complete an updated comprehensive survey audit of current conditions of each of the School District’s main and auxiliary buildings
2) Provide an itemized list of recommended capital improvement repairs, replacements, maintenance and upgrades
3) Cost estimates for each capital improvement item, and
4) Assign a ‘priority level’ to each item to help establish a timeline for the recommended work to be completed.

The *Facilities Condition Assessment* does not involve an analysis of space needs or changes to program requirements. The emphasis of this report is to evaluate current conditions of each facility with recommended capital improvements determined to be necessary to maintain the building quality for each of the various facilities.

The *Assessment* included a review of the following School District facilities:

- Onalaska High School
- Onalaska Middle School
- Eagle Bluff Elementary
- Irving Pertzsch Elementary
- Northern Hills Elementary
- Central Kitchen
- Riders Club Road Site including Activities Building
- District Office & Annex Building

The survey of these various facilities followed a structured format and involved visual observations along with input from the District’s maintenance staff.

Building Envelope
Complete a review of the roofs, exterior walls, doors and window components that comprise the ‘envelope’ enclosure for the building. Develop list of repairs, replacements or general maintenance to ensure watertightness and thermal efficiency aspects of the building surfaces and fenestration. In addition, the Assessment includes a ‘Roofing Summary’ that establishes a data base of roof areas, ages of various roofs, roof types, and roof warranties. The intent is to establish a schedule for future roof repairs and replacements based on establishing a level of roofing priorities.

Sitework
Review conditions of site improvements that surround each of the facilities, which includes concrete and asphalt pavement conditions, sidewalks, site drainage and athletic amenities (fields, track surfaces).
Plumbing
Inspect condition of existing plumbing systems and components including fixtures, piping, water heating and water conditioning equipment.

HVAC Systems
Observe condition and review deficiencies of the mechanical systems serving each of the buildings with emphasis on improving efficiencies and controls.

Electrical Systems
Review existing electrical systems that includes panelboards and switchgear, emergency lighting, door lighting fixtures, clock systems, data system infrastructure, building security and access control.

Handicap Accessibility
Each building was evaluated for compliance with the current ADA guidelines starting with accessible parking areas, accessible routes to the building, interior circulation accessibility, toilet room facilities and ADA compliant signage. The conditions review is accompanied with recommended improvements that enhance the handicap accessibility at each of the individual schools, Central Kitchen and District Office buildings.

PRIORITY LEVELS

The schedule of recommended facility improvements includes a column for designated ‘Priority Levels’ that will be assigned by the District. The intent is to maintain an ongoing list of potential work items that can be added to on an annual basis. Priority levels are subject to change depending on changing conditions that warrant re-assignment. The three Priority Levels are as follows;

LEVEL 1
Building upgrades under this priority should receive attention as soon as practical. Further deterioration may affect weather resistance, building operations and/or immediate maintenance costs.

LEVEL 2
Remodeling/replacement work under this level could be included within a scheduled timetable or phased in as funding is available. Improvements may be justified by increased energy efficiency.

LEVEL 3
Proposed work under this level can be indefinitely deferred or addressed on an ‘as-needed’ basis. Repair or replacement work may be necessary for general improvements to the interior environments but will not generate any appreciable level of building operational savings.
INDEX

PART 1 – Facilities Condition Assessment

<table>
<thead>
<tr>
<th>Facility</th>
<th>Page Nos.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onalaska High School</td>
<td></td>
</tr>
<tr>
<td>Facilities Assessment – Architectural</td>
<td>HS: 1–12</td>
</tr>
<tr>
<td>Building Addition Key Plans</td>
<td>HS: 13–14</td>
</tr>
<tr>
<td>Main Level Floor Plan</td>
<td>HS: 15</td>
</tr>
<tr>
<td>Lower Level Floor Plan</td>
<td>HS: 16</td>
</tr>
<tr>
<td>Facilities Assessment – Sitework</td>
<td>HS: 17</td>
</tr>
<tr>
<td>Site Plan</td>
<td>HS: 18</td>
</tr>
<tr>
<td>Site Aerial Photo</td>
<td>HS: 19</td>
</tr>
<tr>
<td>Facilities Assessment – Plumbing</td>
<td>HS: 20–23</td>
</tr>
<tr>
<td>Facilities Assessment – HVAC</td>
<td>HS: 24–25</td>
</tr>
<tr>
<td>Facilities Assessment – Electrical</td>
<td>HS: 26–40</td>
</tr>
<tr>
<td>Cost Items</td>
<td>HS: 41–49</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Onalaska Middle School</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Assessment - Architectural</td>
<td>MS: 1–10</td>
</tr>
<tr>
<td>Building Addition Key Plans</td>
<td>MS: 11</td>
</tr>
<tr>
<td>Main Level Floor Plan</td>
<td>MS: 12</td>
</tr>
<tr>
<td>Facilities Assessment – Sitework</td>
<td>MS: 13</td>
</tr>
<tr>
<td>Site Plan</td>
<td>MS: 14</td>
</tr>
<tr>
<td>Site Aerial Photo</td>
<td>MS: 15</td>
</tr>
<tr>
<td>Facilities Assessment – Plumbing</td>
<td>MS: 16–18</td>
</tr>
<tr>
<td>Facilities Assessment – HVAC</td>
<td>MS: 19–20</td>
</tr>
<tr>
<td>Facilities Assessment – Electrical</td>
<td>MS: 21–31</td>
</tr>
<tr>
<td>Cost Items</td>
<td>MS: 32–36</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Eagle Bluff Elementary</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Facilities Assessment – Architectural</td>
<td>EB: 1–5</td>
</tr>
<tr>
<td>Main Level Floor Plan</td>
<td>EB: 6</td>
</tr>
<tr>
<td>Second Level Floor Plan</td>
<td>EB: 7</td>
</tr>
<tr>
<td>Facilities Assessment – Sitework</td>
<td>EB: 8</td>
</tr>
<tr>
<td>Site Plan</td>
<td>EB: 9</td>
</tr>
<tr>
<td>Site Aerial Photo</td>
<td>EB: 10</td>
</tr>
<tr>
<td>Facilities Assessment – Plumbing</td>
<td>EB: 11–14</td>
</tr>
<tr>
<td>Facilities Assessment – HVAC</td>
<td>EB: 15–16</td>
</tr>
<tr>
<td>Facilities Assessment – Electrical</td>
<td>EB: 17–28</td>
</tr>
<tr>
<td>Cost Items</td>
<td>EB: 29–31</td>
</tr>
</tbody>
</table>
Irving Pertzsch Elementary
Facilities Assessment – Architectural ... IP: 1—5
Main Level Floor Plan .. IP: 6
Lower Level Floor Plan ... IP: 7
Facilities Assessment – Sitework .. IP: 8
Site Plan ... IP: 9
Site Aerial Photo .. IP: 10
Facilities Assessment – Plumbing .. IP: 11—14
Facilities Assessment – HVAC .. IP: 15—16
Facilities Assessment – Electrical .. IP: 17—28
Cost Items.. IP: 29—32

Northern Hills Elementary
Facilities Assessment – Architectural ... NH: 1—4
Main Level Floor Plan .. NH: 5
Second Level Floor Plan ... NH: 6
Facilities Assessment – Sitework .. NH: 7
Site Plan ... NH: 8
Site Aerial Photo .. NH: 9
Facilities Assessment – Plumbing .. NH: 10—11
Facilities Assessment – HVAC .. NH: 12—13
Facilities Assessment – Electrical .. NH: 14—19
Cost Items.. NH: 20—23

Riders Club Road Site & Activities Building
Facilities Assessment – Architectural ... RC: 1-5
Facilities Assessment – Sitework .. RC: 6
Site Plan ... RC: 7
Site Aerial Photo .. RC: 8
Facilities Assessment – Plumbing .. RC: 9—10
Facilities Assessment – Electrical .. RC: 11—16
Cost Items.. RC: 17—18

Central Kitchen
Facilities Assessment – Architectural ... CK: 1—9
Facilities Assessment – Plumbing .. CK: 10—11
Facilities Assessment – HVAC (Included in MS) ... MS: 19—20
Facilities Assessment – Electrical .. CK: 12—18
Cost Items.. CK: 19—20

District Office & Annex
Facilities Assessment – Architectural ... DO: 1—6
District Office & Annex Floor Plans .. DO: 7—8
Facilities Assessment – Sitework.. DO: 9
Site Plan ... DO: 10
Site Aerial Photo .. DO: 11
Facilities Assessment – Plumbing .. DO: 12—15
Facilities Assessment – HVAC .. DO: 16—17
Facilities Assessment – Electrical .. DO: 18—32
Cost Items.. DO: 33
Roofing Summary
- Roof Repair Priority Levels .. RS: 1—2
- Roof Data Sheets ... RS: 3—8
- High School Roof Key Plan ... RS: 9
- Middle School Roof Key Plan ... RS: 10
- Eagle Bluff Roof Key Plan ... RS: 11
- Irving Pertzsch Roof Key Plan ... RS: 12
- Northern Hills Roof Key Plan .. RS: 13
- Activities Building Roof Key Plan ... RS: 14
- District Office & Annex Roof Key Plan ... RS: 15
- Cost Items .. RS: 16—17

PART 2 – Conceptual Facilities Master Plan

Onalaska High School
- Administrative Meeting and Site Visit Notes 2 HS: 1—2
- Concept Floor Plan – Upper Level –Option 1 2 HS: 3
- Concept Floor Plan – Upper Level –Option 2 2 HS: 4
- Concept Floor Plan – Lower Level .. 2 HS: 5

Onalaska Middle School
- Administrative Meeting and Site Visit Notes 2 MS: 1—2
- Concept Floor/Site Plan ... 2 MS: 3

Eagle Bluff Elementary
- Administrative Meeting and Site Visit Notes 2 EB: 1

Irving Pertzsch Elementary
- Administrative Meeting and Site Visit Notes 2 IP: 1
- Concept Floor Plan ... 2 IP: 2

Northern Hills Elementary
- Administrative Meeting and Site Visit Notes 2 NH: 1
FACILITIES CONDITION ASSESSMENT

Facility: Onalaska High School

700 Hilltopper Place
Onalaska, WI 54650

Construction Projects/Dates:

1960 Original Construction
1968 Additions & Remodeling
1988 Additions & Remodeling
2006 Roofing Replacement
2010 Window & HVAC Replacement
2012 Tech Ed Dept. HVAC & Boiler Modifications
2013 HVAC Upgrade – Air Handling Equipment Replacement
2016 Install new ADA interior signage.
2017 Replaced Greenhouse Glass Enclosure
2012 – 2017 Overall Window Replacement
2017 Press Box Window Replacement
2016 – 2018 Replaced remaining AHU’s, HVAC Controls and added a supplemental boiler
2018 Replace All Entrance systems

BUILDING DATA

Building Area

<table>
<thead>
<tr>
<th>Year</th>
<th>Description</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>1960</td>
<td>Original Building</td>
<td>31,020 SF</td>
</tr>
<tr>
<td>1968</td>
<td>Addition</td>
<td>57,871 SF</td>
</tr>
<tr>
<td>1988</td>
<td>Addition</td>
<td>134,503 SF</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>223,394 SF</td>
</tr>
</tbody>
</table>

Building Occupancy Classification: Educational Group E

Construction Type: Type II-B

Fire Protection: Non-sprinklered.
1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

The exterior walls were constructed of masonry bearing walls comprised of modular and Norman face brick over concrete block. The original 1960 building and 1968 additions were constructed as solid masonry without any rigid cavity or surface applied insulation. The exterior masonry walls of the 1988 high school addition were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and a 8” concrete block backer.

Observations

In general, the exterior face brick remains in very good condition with limited areas that should be cleaned of stains. Two locations on the west end of the building exhibit minor cracking that could easily be repaired. Mortar joints appear to be in satisfactory condition with various locations requiring re-pointing.

The stained brick walls below the greenhouse projection off the west end of the building were cleaned as part of the glass window replacement project.

The brick walls constructed as part of the 1988 addition utilized a particular plastic tube weep vent at the bottom of the wall, which appear to be partially (if not totally) plugged limiting the moisture weep capabilities. There was no indications that the plugged weep vents are problematic but may warrant a future project to clean out the weep vents. A number of brick expansion joints should be cut out and re-caulked. At some of the expansion joints, the caulking has been partially ‘squeezed’ out of the brick head joints likely due to brick expansion. These joints should be monitored on an annual basis to ensure that they maintain a waterproof joint.

Metal roof edge fascia, flashings and wall caps also appear to be in relatively good condition and do not warrant any immediate action.

Limited wall areas of the 1988 addition were clad with an exterior acrylic stucco surface. The surface appears to be functioning as a weather barrier but shows some signs of aging, to be expected. A couple of hairline cracks were observed that may be a result of seasonal expansion and shrinkage cycles.

Recommendations

The District may want to consider re-coating the acrylic stucco with a new flexible elastomeric coating that will reinforce the waethertightness of these wall areas.

1.2 WINDOWS

A building wide window replacement project was completed between 2012 and 2017. The high school presently utilizes all aluminum windows.

1.3 DOORS

Hollow metal doors and frames are also showing signs of aging, with corrosion and general deterioration. Future maintenance related projects should be considered to include replacement of the exterior hollow metal doors and frames, which would also allow the restoration of any steel lintels above the door (and window openings).

All aluminum entrance doors, entry windows, hollow metal doors and framing are scheduled for replacement in 2018.

1.4 ROOFING

Roof Structure

1960 Original Building
The roof structure includes multiple framing types. The original 1960 building was constructed with a combination of Tectum decking bearing on a bulb tee system. The original gymnasium was constructed with laminated wood frames and purlins. The original roofing was specified as a built-up roofing, which has since been re-roofed.

1968 Addition
The roof framing for the 1968 additions consisted of steel open web “bar joists” coupled with a poured gypsum deck system that was pitched for drainage to the internal roof drains.

1988 Addition
Roof framing was comprised of steel bar joists with steel decking.
Roofing
The high school roofing is separated by multiple parapets, raised mechanical penthouses, and roofs of different elevations. With exception of a small sloped shingle area on the west end of the school, the individual roof areas are of a ballasted and fully-adhered single-ply rubber roofing over various thicknesses of rigid insulation. In 2006, selected areas were re-roofed with a fully-adhered 60 mil single-ply rubber membrane, including the sloped roof above the auditorium. The balance of the roofing from the 1988 additions are comprised of a ballasted rubber membrane.

Observations
Based on a discussions with the District’s roofing consultant, Bechtel LLC, it was noted that in general, the existing rubber roofing is in satisfactory condition with an indefinite remaining life-span. The primary areas of focus should be directed at; 1) ballasted roof membrane seams, 2) perimeter roof edge conditions and 3) flashings of the mechanical equipment and skylight curbs.

The typical shrinkage of the single-ply membrane roofing was noted to be expected for a roof approaching 24 years of age. The shrinkage primarily shows up where the rubber membrane is pulling away (‘tenting’) from the vertically flashed face of the wall. It was recommended that the perimeter membrane be cut and reflushed with reinforced perimeter strip. Roof curbs for mechanical equipment and skylights should also be reflushed.

Properly maintained, the lifespan of the existing roofs could be extended indefinitely or at least added to the list of deferred maintenance projects. The decision to re-roof areas of the high school may be evaluated on a cost basis that compares the cost to repair the perimeter flashings and seams versus tear-off and replacement of the entire rubber membrane.

2.0 BUILDING INTERIOR

2.1 FLOORING

The High School includes multiple flooring materials including the following:
- vinyl asbestos tile (VAT)
- vinyl composition tile (VCT)
- Fritztile
- carpet
- ceramic tile
- quarry tile
- maple gym flooring
In general, the various floorings are well maintained, including the remaining vinyl asbestos tile from the original construction.

The vinyl composition tile shows typical minor signs of cracking or telegraphing of imperfections in the concrete slab substrate. Various floor expansion joints need to be inspected for potential trip hazards.

The Fritztile was used in the main lobby and commons/cafeteria as part of the 1988 addition. Fritztile was described as a terrazzo tile, however, the material is an epoxy based substrate with stone aggregate of various sizes. The tile appears to be well maintained and maintenance staff are satisfied with the performance of the tile in these high traffic areas.

Carpeting is used throughout classrooms, LMC, computer labs, school offices, band room and auditorium. The carpet appears to be holding up well and is well maintained with no specific areas requiring replacement.

The maple gymnasium flooring was also installed as part of the 1988 addition and should be considered for a re-finishing project involving sanding, paint striping and sealing.

2.2 WALLS

The majority of interior walls are of concrete block and are in satisfactory condition.

2.3 INTERIOR DOORS & FRAMES

Interior doors are generally solid core oak veneer wood doors in hollow metal frames. Fire rated door assemblies include wire glass lites.

Observations

Wood doors exhibit normal deterioration from the years of service. Latchsets have been changed out to ADA compliant lever handles.

Recommendations

1. Wood doors can generally continue to be used and replaced on a case by case basis, however, a select number of wood doors are damaged to the point of requiring replacement.
2. Hollow metal door frames should be repaired and repainted.
3. Wire glass should be removed and replaced with new fire-rated safety glass.

2.4 TOILET PARTITIONS

Observations

Metal toilet stall partitions show typical damage and deterioration from heavy use and abuse.

Recommendations

Partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.
2.5 SCIENCE LAB EQUIPMENT

Observations
The high school science department was included under the 1988 project and consists of six (6) lab/classrooms located in the lower level at the west end. Each of the science labs has wood cabinetry with epoxy resin worksurfaces. The two chemistry labs have demonstration type fume hoods. Both chemistry labs also have emergency eyewash sinks and overhead emergency drench showers. It is recommended that the eyewash sinks and showers be replumbed to add mixing valves to the water service to temper the water temperature. Chemistry room 119 was updated approximately 15 years ago with new faucets and gas turrets. All other gas turrets and gooseneck faucets are original (1989) and appear to be in good condition with a couple of exceptions.

The instructor’s demonstration tables were salvaged at the time of the 1989 construction from the previous school’s laboratories. These tables could be changed out with new ADA compliant demonstration tables. All other island and peninsula chemistry workstations appear to be in good condition with minimal signs of damage. Salvaged storage cabinets are also used in the science prep rooms. These cabinets appeared to be well built and should have several years of service left.

The perimeter countertop worksurfaces and student tables in the three biology and physics lab also appear to be in satisfactory condition given their age of 24 years. The student tables were originally movable and positioned in conjunction with floor pedestal type electrical receptacles. The tables were then anchored to the floor and conduit routed to the table aprons with receptacles.

Recommendations
1. Conduct a detailed study of the high school lab facilities to update for current trends, ADA compliance, AV equipment, HVAC (fume hoods), plumbing, and electrical systems.
3.0 SUPPORT BUILDINGS

3.1 OUTDOOR FOOTBALL FIELD BLEACHERS & PRESS BOX

The main bleacher facility is located at the west edge of outside lane of the running track and was originally constructed without an underneath closure. The framing consists of steel substructure with aluminum bench seating and galvanized steel guardrails.

The underside was closed off with prefinished ribbed metal wall panels to provide secure storage for P.E. equipment and field maintenance equipment. The north end serves as concession sales. A wood framed press box was added in the 1990’s and supported by wide flange steel columns. The west wall of the enclosed understructure includes three push-up coiling doors and three similar coiling counter doors at the concessions sales corner. With exception of the press box, the main structure and seating assemblies appear to be in satisfactory condition.

Site Related Issues
Storm water run-off from the perimeter of the bleacher facility had been an ongoing problem. Run-off from all four directions were basically intended to be collected in a single and undersized catch basin out from the west side of the bleachers. Maintenance staff described that the ponding water around the catch basin can reach depths of 18 inches or more. Run-off passing under the bleachers and through the enclosed equipment storage areas will often freeze during cold conditions.

- Run-off from the football field passes unimpeded over the running track and then though the storage rooms under the the bleachers collecting at a low point catch basin.
- Water run-off flows around the north end of the bleachers and continues to the catch basin off the west side of the bleachers.

- Run-off from the high school parking lot is also collected at the single catch basin in front of the bleachers.

- The lawn area to the south of the bleachers also drains toward the bleachers and is partially collected in an area drain.

The press box has previously involved replacement of water damaged framing and floors. The windows were replace in 2017 to commercial grade, aluminum sliders.

Recommendations

Stormwater run-off management needs to be re-designed to prevent the water from passing through the enclosed under-bleacher storage areas. This will involve a comprehensive plan that collects run-off from the football field and running track, routing it to an enlarged storm sewer system. Another consideration would be to create a storm water detention area in the lawn area to the south of the bleachers.

Also included on the list of improvements would be replacement of the light-duty push-up coiling garage doors with heavier-duty overhead sectional doors. The door jambs at the overhead doors also show some damage, likely from moving items in and out of the enclosed storage areas. A recommendation would be to add concrete filled steel bollards at the sides of the door openings.
3.2 VEHICLE STORAGE BUILDING

The vehicle garage building located just north of the grandstands was constructed as a simple pole barn structure, wood framed with corrugated metal siding and roofing.

The garage structure shows signs of wear and corrosion but can likely be used indefinitely. Overhead doors and swinging doors can be replaced, however the building in general appears to have deteriorated to the point of total replacement.

Recommendations
Continue usage of the building but schedule future building replacement when funds are available.

4.0 HANDICAP ACCESSIBILITY

4.1 ACCESSIBLE ROUTES

Existing Conditions
The Wisconsin Commercial Building Code defines an “accessible route” as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site amenities such as staff parking lots and bus loop driveways. The High School site currently provides accessible routes from the north side driveway loop to Entrance ‘E’.

Recommended Action
The existing curb ramp at the east end of driveway loop will need to be replaced to eliminate the raised lip.
4.2 ACCESSIBLE PARKING

Where parking is provided, accessible parking spaces shall be provided as follows:

<table>
<thead>
<tr>
<th>Total Parking Spacing Provided</th>
<th>Required Number Of Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>301 to 400</td>
<td>8</td>
</tr>
</tbody>
</table>

Van accessible spaces shall be provided for every eight accessible stalls. The existing parking lot includes a total of 325 spaces. There are currently five designated handicap parking stalls.

Recommendations
Re-stripe handicap accessible parking stalls and access aisles with appropriate signage.

4.3 ACCESSIBLE ENTRANCE

Existing Condition
Entrance ‘A’ into the south side lobby currently has an automatic door opener device attached to the entrance door on the east end of the entrance. Push plates have been installed on the adjacent wall surfaces on the interior and exterior sides.

Entrance ‘E’ on the north side also has door operators and push plates.

4.4 ACCESSIBLE INTERIOR CIRCULATION

Existing Conditions
In general, all floor levels in the high school are handicap accessible. Lifts are provided at three locations. One lift is located at the east end for access between the main level corridor and the Tech Ed Dept. on the lower level. A second lift connects the main level with the kitchen floor level. A third lift is located off the corridor at the NE corner of the fieldhouse and provides access to the basement level locker rooms. The Dance Studio floor level is accessed only by stairs inside the Dance Studio. An elevator is provided to connect the lower level to the main level, and also connects the lobby level.

Recommendations
Handicap access should be considered for the Dance Studio if the room is to function as the one and only room for the dance studio.

4.5 ACCESSIBLE TOILET FACILITIES

Existing Conditions
With the exception of boys and girls toilet rooms off the south and north ends of the locker rooms, all other toilet rooms are not completely compliant with ADA guidelines. Doors have been removed at entrances into the toilet rooms in effort to provide the minimum door clearance.

Locker rooms were designed with one accessible private shower stall in each of the boys’ and girls’ side, however, toilet rooms do not comply with the ADA guidelines for minimum clearances.
Recommended Action

Providing for handicap accessible toilet facilities in the locker rooms would require significant structural changes. Remodeling of the P.E Instructor’s Offices to create an accessible toilet room may be one approach but would also reduce the available space of the P.E. Office.

4.6 SIGNAGE

ADA compliant signage was installed throughout the school in 2016.
Onalaska High School
Site Facility Assessment Comments

The Onalaska High School is a mature facility with much of the site infrastructure approaching the end of its useful life. Significant repaving has corrected many of the issues with paving and drainage. However, curbs and sidewalks adjacent to paved areas still pose significant concern. Sidewalks in many areas are generally in good condition but have sagged or heaved out of alignment with the adjacent curb and result in a critical tripping hazard that should be corrected as soon as possible. Much of the sidewalk could be salvaged by mud jacking into alignment. The obvious solution to this problem on the southeast drop-off area is more complex and is likely to involve a broad reconstruct of the entire area to provide safe walkways.

The running track surface appeared to be in good condition at this time. However, drainage from the stadium still falls on and drains over the surface of the track. This condition causes a high level of concern in the late winter and spring as freezing and thawing conditions occur frequently. Installing an trench drain at the front edge of the stadium would alleviate this concern and would certainly extend the life of the track surface.

Lastly, the site is not in compliance with ADA code for parking. As an older facility, improvements to surfaces such as slope changes are not required however, signing and striping are not “grandfathered” and where signing and striping can be implemented to create current code compliant parking it is required to be done at the time of ANY sealcoat and restripe operation. During the last coating and striping project the signs were not reinstalled as require to current ADA standards.
The following report is the result of a site visit by Bob Novak, Tailored Engineering that occurred on March, 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 4 units provide adequate hot water for the building. The units are in good condition and are operating well.
2. The building is served by a duplex water softener. The water softener is softening all domestic water and some cold water serving equipment.
3. The Tech ED air compressor is an older model however it is operating well. The daily demand on the unit is relatively low. Would expect it to function properly for years to come.

B. Recommendations

1. Instantaneous water heating equipment is required to be maintained for scale on a regular basis. Annual maintenance shall be provided on equipment as required.

C. Expected Remaining Lifespan

1. Water heating equipment is expected to last 10 years. Water softening equipment should be viable for another 15 years.

Plumbing Fixtures

A. Observations

1. Plumbing fixtures in the original building are in fair condition. Modifications have been made in some
locations to update flush valves and faucets on existing plumbing fixtures.

2. Toilet rooms in the lower level team rooms are generally in poor condition and should be scheduled for replacement.

3. Toilet rooms in the 1998 addition are in good condition however the fixtures do appear to have some staining in the water closets and urinals which appear to be the result of hard water.

4. Showers in the team rooms are in fair condition.

5. Science rooms appear to be in good condition. Lab sinks are cold water only and the faucets do not have code compliant aerators located on the outlet of the spout.

6. Natural gas is provided in all science rooms however the gas does have an emergency shut off accessible within the room. It is a manual valve in a wall box.

7. Science rooms are provided with either an emergency eyewash or eyewash shower. The fixtures are not provided with an OSHA required mixing valve to regulate the outlet temperature of the fixture.

8. Kitchen equipment appears to be in good condition.

B. Recommendations

1. Plumbing fixtures located in the original building should be scheduled for replacement. Typically these rooms and fixtures are not ADA compliant.

2. Provide continual maintenance on all plumbing fixtures to increase the longevity of the fixtures.

3. We recommend that hot and cold water be routed to all emergency fixtures. An OSHA approved mixing valve is also required at these locations.

4. Provide emergency shut-off controls located in the classrooms for the natural gas piping and turrets located within the science rooms.

C. Expected Remaining Lifespan

1. Original plumbing fixtures should be replaced within the next five years. Fixtures that have been updated with new flush valves or faucets have the potential of being reused if the work is done within that time frame. Opinion of cost $2,500 per fixture.

2. Fixtures located within the new addition should be viable for another 20 years.

Sanitary Piping
A. Observations

1. The piping in the 1960 and 1968 building are cast iron and galvanized vent piping.
2. The owner indicated that the urinals located near the Field House are very poor draining and require continual maintenance.
3. In the 1968 addition it appears a product called Tru-Spun cast iron piping was installed. This product typically does not have the same life expectancy as regular cast iron.
4. The acid neutralization basin provided for the science areas likely has not been maintained for some time. This equipment does require annual or bi-annual maintenance.
5. An interior grease interceptor has been provided for the kitchen. The interceptor appears to be in good condition and is maintained on a regular basis.

B. Recommendations

1. We recommend that the sanitary sewer in the team room and the Field House toilet rooms be viewed with a camera to determine the condition and integrity of the existing piping.
2. Continually monitor the Tru-Spun cast iron piping for problems. This piping may need replacement in the next 10-15 years.
3. Maintain the Acid Basin.

C. Expected Remaining Lifespan

1. Replacement of Tru-Spun Cast piping may not be necessary. We recommend replacing the product as required. The estimated budget to replace the Tru-spun piping should this be required is $100,000.
Storm Piping

A. Observations
 1. The owner indicated no problems with the storm piping, roof drains or storm drainage for the building.
 2. Piping materials appear to be holding up well

B. Recommendations
 1. Continue to monitor the storm piping system.

Domestic Water Piping

A. Observations
 1. Original portions of the building are provided with galvanized domestic water piping. Additions and renovations have been piped using Type “L” copper tube.
 2. Other than the shop areas, no problems with water pressure or water quality were reported. Further investigation is required to determine problems with the shop areas however it is expected that the old galvanized piping may be failing.
 3. Water at the start of the school year is always very rusty. This problem occurs with the existing galvanized piping and will always occur until the galvanized water mains are replaced.
 4. The building is supplied by a 4” domestic water service with a 4” water meter. A separate water meter and backflow preventer has been provided for irrigation to the athletic fields. The existing water service is not large enough to support a fire protection system for the building should one be desired in the future,

B. Recommendations
 1. Galvanized domestic water piping should be scheduled for replacement.
 2. Additions or major renovations to the building may require the building to be provided with a fire protection system. A new 6” domestic water service should be evaluated for the building.

A. Expected Remaining Lifespan
 1. The galvanized water likely has a 10 life expectancy depending on the water quality. The estimated cost to replace the water piping in the original building is $150,000. This would include all new water supply mains and branch piping.
 2. A new water service for the building would likely cost $30,000. Fire protection for this building would be estimated at $3.00 per sq.ft.
HVAC

The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on August 2, 2013 with a follow up visit to update the building status on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. The building heating system is a hot water system that consists of two (2) Burnham 100 hp packaged firetube boilers each rated at 3,348,000 btu gross output. The pumping system is a primary-secondary arrangement with variable flow system pumps. A stand-by pump is piped in parallel in both the primary and secondary loops. The hot water system pumps were replaced in 2017.

2. In 2017, a Thermal Solutions high-efficiency condensing boiler was installed to provide system hot water for summer reheat and dehumidification use as well as late spring and early fall heating at increased efficiency levels.

3. The building cooling system is a central chilled water system that consists of a Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-only arrangement with a variable flow pump. The pump was replaced in 2017 and a stand-by pump was added at that time, as well as additional modules added to accommodate actual cooling load.

4. In 2017, five (5) air handling units were replaced with new modular Daikin units with variable frequency drives to provide variable fan speed operation. The units that were replaced serve the Gymnasium, Auditorium, Cafeteria, Tech Ed area, Choir/Band, Copy Center and Classrooms.

5. The entire building is controlled by a Schneider Electric direct digital control system with a Tridium/Niagara head end.

B. Observations

1. The boilers are in good condition and, with a proper maintenance program, should continue to serve the building for another 15 years or more.

2. Several classrooms that were previously larger and later partitioned into multiple classrooms did not receive revisions to the HVAC system zoning. As a result, multiple rooms are served by a single VAV box and a single room thermostat.
3. Both the hot water and chilled water systems contain chemical compound feeders. The chilled water system is also served by an in-line water filter.

C. Recommendations

1. Provide additional VAV boxes as needed to the classroom spaces that have been partitioned in the past without HVAC revisions.
The following report is the result of a site visit by Muermann Engineering, LLC that occurred on August 2, 2013 and by Galileo Consulting Group LLC on March 2nd, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The building was originally constructed in 1960. Additions and remodeling were done in 1968 and 1988.

Main Electrical Service

Existing Data

B. This school has a 2,000 amp 480Y/277 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT’s are integral to the main switchboard. The meter socket is mounted on the switchboard. The main service switchboard consists of a 2,000 amp fused disconnect switch section and a fused disconnect switch distribution section for the branch feeders. This service equipment was installed in 1988. The switchboard is a General
Onalaska High School
Onalaska, WI

Electric. There are 2 spare fused switch sections: one 400 amp, and one 100 amp and one 60 amp in the switchboard.

Observations

A. The main service switchboard does not have a surge protection device.

B. The existing 1960 Switchboard located in what is referred to as the ‘Laundry Room #211C should be removed and replaced with new. This switchboard feeds an existing air handling unit, Woods and Metals Shop Panelboards, Panel LCF-2 and unknown Panels. Switchboard is fed from the 1968 Switchboard.
Expected Remaining Lifespan

A. The expected remaining lifespan of the main service switchboard is about 15 - 20 more years. However with the minimal amount of ‘Spare’ fused switches, no major additional loads (larger than 400 amps) could be added without expanding the existing switchboard.

Recommendations

A. Provide surge protection device on main service. $4,000.

B. Provide a new 600 amp. (minimum) distribution panelboard to replace 1960 switchboard. $15,000.

Panelboards

Existing Data

A. The panelboards are General Electric and were installed in 1968 or 1988.

Observations

A. The panelboards are generally full and do not have space for additional circuit breakers.

B. The panelboards that were installed in 1968 are at the end of their useful life due to the operating lifespan of circuit breakers.

C. The panelboards that were installed in 1988 are in good working order. However as noted above are full and have minimal space for additional circuit breakers.

D. In the Kitchen by the Service Line, the panelboard is full and should be replaced with a new larger panelboard. It is also the opinion of this writer, the existing panelboard should be relocated to a better location. $4,000.
Expected Remaining Lifespan

A. The expected remaining lifespan of the 1968 panelboards is about 5 more years and should be replaced.

B. The expected remaining lifespan of the 1988 panelboards is about 15-20 more years.

Recommendations

A. Replace the 1968 panelboards and feeder wire with new. New circuit breakers will allow for a safer and more expandable installation. $7,000 EA for a Total of $140,000.

B. Provide one additional panelboard located adjacent to each 1988 panelboard. Observed a minimum of Seven (7) additional panelboards required. $4,000 Each for a Total of $28,000.
Generator

Existing Data
A. This building has a 50 KW Kohler natural gas fueled generator. The generator is liquid cooled. It was installed in 1988. The generator is located in the gym mezzanine mechanical room.
B. There is one Kohler automatic transfer switch mounted next to the generator.

Observations
A. The emergency panel fed from the transfer switch contains both life safety and equipment loads.
B. The generator is in good working order.

Expected Remaining Lifespan
A. The expected remaining lifespan of the generator and automatic transfer switch is about 15 more years.

Recommendations
A. Provide an additional automatic transfer switch to separate life safety from non-life safety loads on the emergency power distribution system as required by current life safety code. $30,000
B. Provide UL 924 listed emergency bypass relays to the emergency egress lighting circuits powered by the generator to allow the egress lights to automatically come on upon loss of normal power. $10,000

Transformers

Existing Data
A. In the room referred to as ‘Fire Alarm Control Panel” there is an existing 225 KVA, 480 VAC, Delta primary, 120/208 VAC Y Secondary transformer which is excessively noisy and distracting to personnel and students in the adjacent offices and classrooms. It is recommended that this transformer shall be replaced with a less noisy and more energy efficient transformer. $8,000.
B. In the room referred to as 'LMC Transformer Room' there is an existing 112.5 KVA, 480 VAC, Delta primary, 120/208 VAC Y Secondary transformer which is excessively noisy and distracting to students in the adjacent classrooms. It is recommended that this transformer shall be replaced with a less noisy and more energy efficient transformer. $6,000.
Lighting Fixtures and Controls

Existing Data

A. The classrooms have 2x4 2-lamp fluorescent lay-in fixtures with acrylic lens that are 6 years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two switches that control two separate banks of lights. The light fixtures are on 8’ X 8’ centers.

B. The corridors have 2x4 fluorescent lay-in 2-lamp fixtures with acrylic lens that are 6 year old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors. There is no night lighting. The fixtures are spaced 14’ on center.

C. Exterior fixtures are LED and were recently installed in 2017.

Expected Remaining Lifespan

A. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

Recommendations

A. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $200/fixture.

B. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $670,182

C. For Specialized Instruction areas such as; Special Education, Childrens Day Schools, Disabilities, Sensory, ETC, recommend installing Tunable LED lighting and associated digital controls. Budget - $4.00/sq.ft.

Wiring Devices

Existing Data

A. The receptacles and toggle switches are commercial grade 15A with stainless steel plates.

B. There is one receptacle per wall in a typical classroom.

Observations

A. Many switches and receptacles have been recently replaced.

Expected Remaining Lifespan

A. The expected remaining lifespan of the wiring devices is about 15 more years.

Recommendations

A. Replace any broken switches and receptacles. $30 EA

B. Add additional receptacles to classrooms as required. $380 EA, estimating 80 receptacles for a total of $30,400
Fire Alarm System

Existing Data

A. The fire alarm is an EST3 addressable system. The system is 15 years old and was installed in 2003. End-Point devices such as manual pull stations, smoke detectors, notification devices, heat detectors, duct detectors, etc. were upgraded in 2012. The fire alarm control panel is located in the first floor electrical room near the main office.

B. There are pull stations by all exterior doors.

C. There are ceiling mounted horn strobe devices in the corridors and classrooms.

D. There are smoke detectors in storage rooms. There are heat detectors in mechanical rooms.

E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.

F. The majority of the fire alarm cabling is installed in ‘free-air’, not in conduit.

G. This is a non-sprinklered building.

Observations

A. The fire alarm system is in good working order.
B. Fire alarm system is compliant with current fire alarm codes.

Expected Remaining Lifespan
A. The expected remaining lifespan of the fire alarm system is about 10-15 more years. Owner will be required to continue to make periodic upgrades and code updates to the control system.

Recommendations
A. Consider upgrading to an audio evacuation fire alarm system:
 1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
 2. This building is not sprinklered.
 3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
 4. Budget estimate to upgrade to audio evacuation system installation - $150,000.

Clock System

Existing Data
A. A new Sapling Master Clock Controller was installed in 2017 which is the master for controlling the existing Lathem hard wired synchronized wall clocks. This master is ready for wireless clocks in the future. The clock master controller is located in the main office.
B. There are Lathem hard-wired analog clocks in the classrooms, corridors, offices, and other public areas. These Lathem clocks are approaching 30 years old.
C. The bell tone is controlled by the master clock controller.

Observations
A. The clock system is in adequate working order. The clocks are approaching or have exceeded end of expected life cycle.
B. Additional clocks can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the clock system controller is 15-20 more years. Individual clocks are at their end of life expectancy.

Recommendations
A. Recommend budgeting for wall clock replacement, $200 per clock depending on power option. The master clock is already upgraded. Total budget $30,000.

Intercom System

Existing Data

A. There is a Telecor intercom system. The overall system is 30 years old. However the main CPU and Amplifier were replaced and upgraded in 2017. The amplifier is located in the main office storage room.

B. There are wall mounted intercom phones in the classrooms to allow two way communications with the front office. The intercom is also accessed through the Mitel 3300 IP phone line which allows users with a code to perform a building page from any Mitel phone.

C. There are surface and recessed wall mounted intercom speakers in the corridors.

D. There are flush wall mounted combination clock speaker baffles in the classrooms.

E. The bell system is toned through the intercom speakers.

Observations

A. The intercom system is in adequate working order.

B. Additional intercom speakers can be added.
C. The 30 year old intercom system has reached its end of life expectancy.

Expected Remaining Lifespan

A. The expected remaining lifespan of the replaced CPU and Controller is about 10 - 15 more years. The speakers and wiring have reached end of life expectancy.

Recommendations

A. Replace with a new modernized system. Consider a system to integrate with modern technology such as mobile communication, pre-recorded messaging, etc. Budget allowance of $80,000

Phone System

Existing Data

A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

B. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the first floor electrical room near the main office and in the lower level storage room. There are also voice wiring blocks in each of the 5 data closets.

Observations

A. The phone system is in adequate working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the Mitel 3300 IP phone system is about 10 more years.

Recommendations

A. Remove all CAT 3 wiring and replace with new CAT 6. Budget $45,000.
Data System

Existing Data

A. The MDF data rack is located in first floor electrical room near the main office. There is one floor mounted data rack. There are 4 additional IDF data racks located throughout the building. New Cisco Switches for PoE and non-PoE was added in 2017. New Single-Mode Fiber Optic cable was added. The system is capable of transmitting 10 meg of broadband.

B. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

C. The data cable is a combination of CAT5e and CAT6 plenum rated which is routed to patch panels in the data rack.

D. The patch panels in the data rack are a combination of CAT5e and CAT6 Panduit.

E. There is a rack mounted UPS.

F. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of 1 access point per classroom. The Computer Network wireless access system is adequate for today's needs and for anticipated near future.

Observations

A. The data system is in good working order.

B. Additional horizontal runs of data cable can be added to the existing rack.

Expected Remaining Lifespan

A. The expected remaining lifespan of the CAT3 data cabling is about 5 more years.
B. The expected remaining lifespan of the network equipment is about 7-10 more years.

Recommendations
A. Replace the old existing CAT3 cable with new CAT6 cable. $150/data jack
B. Provide additional switches, patch panels and equipment racks. Budget a total of $75,000.

CATV System

Observations
A. There is a CATV service to this building. CATV splitters are located in storage closets throughout the building. CATV system is no longer in use.
B. There is a CATV jack in each classroom.

Expected Remaining Lifespan
A. Not Applicable.

Recommendations
A. Remove all CATV equipment and jacks.
B. Remove all CATV Coax cable. Budget $7,000.

Security System

Existing Data
A. There is an Ademco security system. The security control panel is located in the lower level laundry room.

B. The security system has new motion sensors installed in 2017.

Observations

A. There are no exterior door contact switches.

B. Security system is in good working order.

C. Additional security devices can be added.

Expected Remaining Lifespan

A. The expected remaining lifespan of the security system is about 7 - 10 more years.

Recommendations

A. Due to advance age of the system, consideration should be given to replace the security system head-end equipment with a new modernized, programmable, software based, system which could be integrated with CCTV Cameras, Fire Alarm and Electronic Door Access Systems. Install 52 door contact switches Budget $31,000.

CCTV System

Existing Data

A. There is a server based IP CCTV system used throughout all the buildings in the district.

B. There are interior and exterior fixed color IP cameras.

C. Current Network recorder has the capability of recording for 30 days.

Observations

A. The CCTV system is in adequate working order.

B. Additional cameras should be added for better security coverage.

Expected Remaining Lifespan

A. The expected remaining lifespan of the CCTV system is about 5 - 7 more years.

Recommendations

A. Provide additional interior and exterior IP Cameras. $1,000/camera for interior, $2,000/camera for exterior. Estimate 10 exterior cameras and 20 interior cameras for a total of $40,000.
Access Control System

Existing Data
A. There is an RS2 System door access control system installed for the District in 2015 - 2016.

Observations
A. The access control system is in good working order.
B. This system is expandable and additional doors can be added to this system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 10-15 more years.

Recommendations
A. Install electric strikes, key fob readers, request to exit, etc on additional exterior doors as needed for additional security and building use. $3,000/door for an estimate of twelve additional doors for a total of $36,000.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-0001</td>
<td>10/10/13</td>
<td>Roofing Repair</td>
<td>Maintenance</td>
<td>Continuation of roofing repairs, part of PM program</td>
<td>$14,000</td>
<td>Annual</td>
<td>1</td>
</tr>
<tr>
<td>HS-0002</td>
<td>10/10/13</td>
<td>Window Replacement</td>
<td>Replacement</td>
<td>Remove and replace balance of clad wood Pella windows with new aluminum windows.</td>
<td>$55,000</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0003</td>
<td>10/10/13</td>
<td>Aluminum Entrance Replace</td>
<td>Replacement</td>
<td>Replace aluminum entrance doors with new heavy-duty aluminum entrance doors.</td>
<td>$21,200</td>
<td>7/1/13</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0004</td>
<td>10/10/13</td>
<td>Replace H.M. doors & frame</td>
<td>Replacement</td>
<td>Remove and replace existing H.M. doors and frame at Entrance ‘F’ with new galvanized H.H. doors, frame and hardware.</td>
<td>$4,200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>HS-0005</td>
<td>11/14/13</td>
<td>Dance Studio Remodel</td>
<td>Upgrade</td>
<td>Install suspended ceiling, upgrade lighting, room acoustics, replace wall surfacing.</td>
<td>$57,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0006</td>
<td>10/10/13</td>
<td>Science Lab Upgrades</td>
<td>ADA</td>
<td>Replace instructors demonstration tables with new ADA compliant tables with movable adjustable ht. table.</td>
<td>$34,040</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0007</td>
<td>10/10/13</td>
<td>Replace Damaged Wood Doors</td>
<td>Replacement</td>
<td>Replace (43) damaged wood interior doors.</td>
<td>$51,980</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0008</td>
<td>10/10/13</td>
<td>Re-glaze Fire Doors</td>
<td>Safety Upgrade</td>
<td>Replace wire glass in interior fire-rated door assemblies with fire-rated safety glass.</td>
<td>$79,120</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0009</td>
<td>10/10/13</td>
<td>Remodel Toilet Rooms</td>
<td>Handicap Accessibility</td>
<td>Remodel main toilet rooms on both levels for compliance with ADA guidelines. Includes replacement of fixtures.</td>
<td>$276,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0010</td>
<td>10/10/13</td>
<td>Replace Greenhouse Glazing & Brick Cleaning</td>
<td>Replacement</td>
<td>Remove and replace existing aluminum framed ‘greenhouse’ at west end lower level Biology Labs. Clean brick surfaces.</td>
<td>$29,500</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0011</td>
<td>10/10/13</td>
<td>New ADA Signage</td>
<td>Code Compliance</td>
<td>Install new ADA compliant room signage throughout the High School.</td>
<td>$15,377</td>
<td>8/1/16</td>
<td>Completed</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HS-0012</td>
<td>10/10/13</td>
<td>New Football Field / Track Storm Water Collection System</td>
<td>Upgrade</td>
<td>Install new area drains between track surface and football field and interconnect with subgrade drainage system.</td>
<td>$40,250</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0014</td>
<td></td>
<td></td>
<td>Open</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0015</td>
<td>10/10/13</td>
<td>Track Surfacing</td>
<td>Replacement</td>
<td>Provide Seal-Flex surface over asphalt track.</td>
<td>$90,194</td>
<td>9/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0016</td>
<td>10/10/13</td>
<td>East Side Driveway Resurfacing Site Grid Location G9 Storm Sewer Replacement</td>
<td>Replacement</td>
<td>Remove and replace asphalt pavement in conjunction with storm sewer replacement out to Wilson Street.</td>
<td>$42,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0017</td>
<td>10/10/13</td>
<td>Tree Removal (Spruce) Site Grid Location H8</td>
<td>Maintenance</td>
<td>Remove dying tree.</td>
<td>$300</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0018</td>
<td>10/10/13</td>
<td>ADA Signage @ Parking Lot Site Grid Location I6</td>
<td>Maintenance</td>
<td>Signs should be 5’ above ground level</td>
<td>$300</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0019</td>
<td>10/10/13</td>
<td>North Side Driveway Loop ADA Curb Ramp Replacements Site Grid Locations H6 & H7 ADA & Replacement</td>
<td>ADA & Replacement</td>
<td>Replace concrete curb ramps with detectable warning field.</td>
<td>$1,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0020</td>
<td>10/10/13</td>
<td>Concrete Walk Replacement, Site Grid Location H4</td>
<td>Repair</td>
<td>Poor drainage at doors, replace and slope to drain.</td>
<td>$1,725</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0021</td>
<td>10/10/13</td>
<td>ADA Parking Stalls Striping</td>
<td>Code Compliance</td>
<td>Site has 6 spaces (5 are not code compliant) 8 compliant spaces required. Re-stripe accessible parking stalls.</td>
<td>$2,500</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0022</td>
<td>10/10/13</td>
<td>Southside Parking Lot Asphalt Resurfacing Site Grid Location C7</td>
<td>Pavement Resurfacing</td>
<td>Remove and replace existing deteriorated asphalt pavement.</td>
<td>$120,000</td>
<td>9/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0023</td>
<td>10/10/13</td>
<td>Southside Parking Lot Pavement Resurfacing Site Grid Location C7/8</td>
<td>Pavement Resurfacing</td>
<td>Remove and reconstruct 120’ x 40’ area with new aggregate base and asphalt pavement.</td>
<td>$15,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0024</td>
<td>10/10/13</td>
<td>Adjust Storm Catch Basin Site Grid Location B8</td>
<td>Maintenance</td>
<td>Casting heaved above surrounding pavement. Regrade and adjust catch basin casting.</td>
<td>$1,500</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>---------------------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HS-0025</td>
<td>10/10/13</td>
<td>Sidewalk Replacement</td>
<td>Safety</td>
<td>Replace or mud jack front heaved sections of sidewalk</td>
<td>$25,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site Grid Location C6-7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0026</td>
<td>10/10/13</td>
<td>Westside Driveway Loop</td>
<td>Safety</td>
<td>Replace sidewalk</td>
<td>$20,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace damaged sidewalk</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site Grid Location D5, E5, F5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0027</td>
<td>10/10/13</td>
<td>Westside Driveway Loop</td>
<td>Maintenance</td>
<td>Replace asphalt pavement, correct unstable base. Correct poor drainage.</td>
<td>$168,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace asphalt pavement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Site Grids E4/5, D4/5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0028</td>
<td>10/10/13</td>
<td>Eastside Parking Lot</td>
<td>Maintenance & Storm Water Management</td>
<td>Replace existing asphalt with new pavement.</td>
<td>$135,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace asphalt pavement.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Parking Lot, D8 & E8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0029</td>
<td>10/10/13</td>
<td>Storm Water @ Football Field Grandstands</td>
<td>Maintenance</td>
<td>New storm water detention area at south end of grandstands. Replace storm sewer from CB @ south end of grandstands to eastside driveway.</td>
<td>$54,050</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0030</td>
<td>10/10/13</td>
<td>Replace coiling doors at football field grandstand storage areas.</td>
<td>Replacement</td>
<td>Replace three overhead coiling doors with new sectional overhead doors at west side of grandstands.</td>
<td>$4,370</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0031</td>
<td>10/10/13</td>
<td>New bollards at grandstands</td>
<td>Maintenance</td>
<td>Install new concrete filled steel pipe bollards at garage door openings to storage areas under grandstands.</td>
<td>$1,380</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0032</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0033</td>
<td>Remove from list</td>
<td>Press box repairs</td>
<td>Repair</td>
<td>Repair water damaged press box structure, replace windows.</td>
<td>$11,700</td>
<td>9/1/2017</td>
<td>Completed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0034</td>
<td>2/6/18</td>
<td>Replace front entrance heater</td>
<td>Maintenance</td>
<td>Install new FCU in front entrance vestibule.</td>
<td>$6,325</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0035</td>
<td>10/10/13</td>
<td>Upgrade lab room sink fixtures.</td>
<td>Code Compliance</td>
<td>Add serrated nipple vacuum breakers at all lab work surface sink faucets. (28 sinks @ $250 ea.)</td>
<td>$8,050</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0036</td>
<td>10/10/13</td>
<td>Upgrade natural gas distribution to lab counter turrets.</td>
<td>Safety</td>
<td>Modify existing gas turrets to control with emergency shut-off in appropriate and accessible location within the science lab room.</td>
<td>$5,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0037</td>
<td>10/10/13</td>
<td>Emergency Shower Modifications</td>
<td>OSHA requirement</td>
<td>Install mixing valve to provide hot and cold water to the existing emergency shower fixture.</td>
<td>$10,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>-------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HS-0038</td>
<td>10/10/13</td>
<td>Replace sanitary piping and urinals in field house</td>
<td>Replacement</td>
<td>The sewers in this area are in poor condition and require continual maintenance</td>
<td>$15,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0039</td>
<td>3/11/15</td>
<td>Install new entrance</td>
<td>Operational</td>
<td>Saw cut new opening into lower level comp lab, remove lockers, electrical, data, install new door. Will need to have a structural engineer determine load bearing.</td>
<td>$25,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0040</td>
<td>10/10/13</td>
<td>Replace worn tru-spun cast-iron piping.</td>
<td>Replacement</td>
<td>Replace existing tru-spun cast-iron piping with standard cast iron piping.</td>
<td>$100,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0041</td>
<td>10/10/13</td>
<td>Replace galvanized water piping</td>
<td>Replacement</td>
<td>The existing water piping is near the end of its life expectancy and will need to be replaced</td>
<td>$150,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0043</td>
<td>10/10/13</td>
<td>Variable flow pumping (chilled water system)</td>
<td>Energy Efficiency/Control</td>
<td>Add a stand-by pump and revise the current constant flow pumping system to variable flow by replacing pump motors with inverter duty motors and installing variable frequency drives with differential pressure control</td>
<td>$95,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0044</td>
<td>10/10/13</td>
<td>New Condensing Boiler</td>
<td>Energy Efficiency/Control</td>
<td>Install a single condensing boiler and connect to the existing hot water piping loop to provide lower hot water temperatures during light load conditions and summer reheat. Boiler efficiency up to 96%</td>
<td>$95,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0045</td>
<td>10/10/13</td>
<td>Replace AHU’s</td>
<td>End of service life replacement.</td>
<td>Replace the remaining (5) air handling units from the 1960s and 1970s construction to provide improved capacity and humidity control + two MAU @ Tech Ed Dept.</td>
<td>$660,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0046</td>
<td>10/10/13</td>
<td>Add VAV boxes</td>
<td>Proper zone control</td>
<td>Provide additional VAV boxes as needed to classroom spaces that have been partitioned in the past without HVAC revisions. (20 VAV’s @ $5,500 ea.)</td>
<td>$110,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0047</td>
<td>10/10/13</td>
<td>Update DDC Controls to single DDC system</td>
<td>Consolidate Controls to single DDC system</td>
<td>Replace the remainder of the existing Trane DDC controls with Schneider Electric controls.</td>
<td>$145,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0048</td>
<td>10/10/13</td>
<td>Add capacity to chiller plant</td>
<td>Lack of cooling</td>
<td>Add additional chiller modules to the existing Multistack modular chiller to increase capacity from 250 tons to approximately 350-400 tons</td>
<td>$175,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0049</td>
<td>10/10/13</td>
<td>Add surge protection</td>
<td>Equipment Upgrade</td>
<td>Add surge protection device to main service switchboard</td>
<td>$4,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HS-0050</td>
<td>10/10/13</td>
<td>1968 Panelboard Replacement</td>
<td>Equipment Upgrade</td>
<td>Replace the 1968 panelboards and feeder with new panelboards.</td>
<td>$140,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0051</td>
<td>10/10/13</td>
<td>Separate Life Safety Loads</td>
<td>Code Compliance</td>
<td>Provide additional automatic transfer switch to separate life safety loads from non-load safety (equipment) loads on the emergency power distribution system</td>
<td>$30,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0052</td>
<td>10/10/13</td>
<td>Emergency Lighting Relay Upgrade</td>
<td>Code Compliance</td>
<td>Provide UL 924 listed emergency bypass relays on the emergency generator egress lighting circuits</td>
<td>$10,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0053</td>
<td>10/10/13</td>
<td>Parking Lot Lighting Upgrade</td>
<td>Energy Conservation</td>
<td>Provide new LED pole mounted area light fixtures in south parking lot. ($3,000 / pole)</td>
<td>$9,000</td>
<td>1/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0054</td>
<td>10/10/13</td>
<td>Classroom Power Upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacles to the classrooms as required. Figure allowance of 80 receptacles @ $380 ea.)</td>
<td>$30,400</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0055</td>
<td>4/02/18</td>
<td>Security System upgrade</td>
<td>Security Upgrade</td>
<td>Provide a new Security System head-end equipment to replace existing. Provide 52 exterior door contact switches</td>
<td>$36,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0056</td>
<td>2/18/14</td>
<td>Update flooring in locker rooms</td>
<td>Safety / Maintenance</td>
<td>Remove existing paint on locker room floors and install new marine grade non-slip epoxy over concrete floors.</td>
<td>$18,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0057</td>
<td>3/4/14</td>
<td>Repair face block and undermining issues.</td>
<td>Repair</td>
<td>Shifting/cracking of foundation causing structural cracks in wall and brick falling off by dumpster enclosure.</td>
<td>$9,400</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0058</td>
<td>3/4/14</td>
<td>Facelift for dumpster area</td>
<td>Operational</td>
<td>The dumpster area is and eyesore, need plan</td>
<td>$8,625</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0059</td>
<td>3/14/14</td>
<td>Irrigation system</td>
<td>Operational</td>
<td>Add irrigation system out to practice fields</td>
<td>$23,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0060</td>
<td>3/4/14</td>
<td>Install alert system in the PAC/Gym/Choir areas.</td>
<td>Safety</td>
<td>Install LED strobes in band/choir areas and LED/speakers in PAC and gym. Activated when PA system is used.</td>
<td>$11,000</td>
<td>12/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0061</td>
<td>3/31/14</td>
<td>Gymnastics Equipment</td>
<td>Maintenance</td>
<td>Replace gymnastics vaulting table</td>
<td>$5,750</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0062</td>
<td>4/24/14</td>
<td>Surveillance Cameras</td>
<td>Safety</td>
<td>Add three inside cameras</td>
<td>$2,467</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>HS-0063</td>
<td>6/24/14</td>
<td>Bleacher end railings retro-fit</td>
<td>Safety</td>
<td>Retrofit bleachers with end railings to meet new ICC 300, NFPA code 102, BOCA, UBC or IBC codes.</td>
<td>$25,000</td>
<td>6/30/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0064</td>
<td>8/7/14</td>
<td>ACM abatement</td>
<td>Safety</td>
<td>Remove ACM from art rooms then polish concrete floors</td>
<td>$20,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0065</td>
<td>10/30/14</td>
<td>Acoustical Treatment</td>
<td>Upgrade</td>
<td>Install Webcore Highstyle acoustical panels in Tech Ed</td>
<td>$8,050</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0066</td>
<td>3/11/15</td>
<td>Scoreboard</td>
<td>Upgrade</td>
<td>Install new football scoreboard</td>
<td>$15,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0067</td>
<td>3/31/15</td>
<td>PAC Carpet replacement</td>
<td>Maintenance</td>
<td>Replace carpet in PAC</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0068</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0069</td>
<td>4/14/16</td>
<td>Exterior Door Replacement</td>
<td>Maintenance</td>
<td>Strip, prime, and repaint 15 exterior doors and 3 overhead doors.</td>
<td>$208,000</td>
<td>7/1/18</td>
<td>2</td>
</tr>
<tr>
<td>HS-0070</td>
<td>4/14/16</td>
<td>Parking Lots</td>
<td>Maintenance</td>
<td>Replace all pavement for parking lots</td>
<td>$296,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0071</td>
<td>6/24/16</td>
<td>Replace Exhaust Hood</td>
<td>Energy</td>
<td>Replace inoperative kitchen ex/make-up air unit with ERU</td>
<td>$128,000</td>
<td>6/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>HB-0072</td>
<td>6/24/16</td>
<td>Replace duct board/add VAV's</td>
<td>Energy</td>
<td>Replace duct board and install 6 VAV boxes to rezone 6 classrooms.</td>
<td>$80,000</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>HS-0073</td>
<td>3/23/17</td>
<td>New welding dust collection system</td>
<td>Operational</td>
<td>Replace existing dust collection system with 5 new hoods, new plasma hood and new collector.</td>
<td>$69,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0074</td>
<td>4/2/18</td>
<td>Transformer Replacement</td>
<td>Equipment Upgrade</td>
<td>Replace 2 existing transformers with less noisy and more energy efficient units</td>
<td>$14,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0075</td>
<td>4/3/17</td>
<td>New greenhouse</td>
<td>Upgrade</td>
<td>Construct new greenhouse structure connecting to the existing greenhouse.</td>
<td>$345,000</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

La Crosse, WI
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-0076</td>
<td>4/4/17</td>
<td>New High Jump</td>
<td>Upgrade</td>
<td>New high jump equipment</td>
<td>$17,250</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0077</td>
<td>2/8/16</td>
<td>Add heating coils</td>
<td>Upgrade</td>
<td>Add heating coil to AHU1-3</td>
<td>TBD</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0078</td>
<td>2/8/16</td>
<td>New restroom fixtures</td>
<td>Upgrade</td>
<td>Replace existing Sloan flush valves with Toto flush valves</td>
<td>$115,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0079</td>
<td>2/8/16</td>
<td>Soundproofing</td>
<td>Upgrade</td>
<td>Use materials to soundproof classrooms</td>
<td>TBD</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0080</td>
<td>2/8/18</td>
<td>Exhaust Fans</td>
<td>Maintenance</td>
<td>Replace failing exhaust fans for science areas in Rm 119</td>
<td>TBD</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0081</td>
<td>4/02/18</td>
<td>Replace 1960 Switchboard</td>
<td>Equipment Upgrade</td>
<td>Provide a 600 amp., Distribution Panel</td>
<td>$15,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0082</td>
<td>4/02/18</td>
<td>Add additional panels adjacent To 1988 Panels</td>
<td>Equipment Upgrade</td>
<td>Additional Panelboards installed adjacent to existing 1988 Panelboards to provide additional circuit breakers</td>
<td>$28,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0083</td>
<td>4/02/18</td>
<td>LED Lighting Upgrade for entire school</td>
<td>Energy Upgrade</td>
<td>Replace all existing interior fluorescent lighting fixtures with LED lighting, Provide new networked digital programmable lighting controls. 223,394 Sq.Ft. x $3.00/sq.ft. = $670,182</td>
<td>$670,182</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0084</td>
<td>4/02/18</td>
<td>Upgrade Fire Alarm System to Voice Evacuation</td>
<td>System Upgrade</td>
<td>Upgrade the existing fire alarm system to Voice Evacuation</td>
<td>$150,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0085</td>
<td>4/02/18</td>
<td>Replace existing clocks with New clocks.</td>
<td>System Upgrade</td>
<td>Replace existing 30 year-old Lathem clocks with new</td>
<td>$30,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0086</td>
<td>4/02/18</td>
<td>Replace existing Intercom System with new</td>
<td>System Upgrade</td>
<td>Replace the 30 year old intercom system with new</td>
<td>$80,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0087</td>
<td>4/02/18</td>
<td>Upgrade Data wiring and equipment</td>
<td>System Upgrade</td>
<td>Replace existing CAT 3 Communication wiring with CAT 6 and provide additional switches, IT racks, Patch panels, etc.</td>
<td>$120,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0088</td>
<td>4/02/18</td>
<td>Remove existing CATV system</td>
<td>Building improvement</td>
<td>Remove existing Coax cables and CATV equipment and jacks</td>
<td>$7,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>HS-0089</td>
<td>4/02/18</td>
<td>Security System upgrade</td>
<td>Security Upgrade</td>
<td>Provide a new Security System head-end equipment to replace existing.</td>
<td>$31,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>HS-0090</td>
<td>4/02/18</td>
<td>Upgrade CCTV System</td>
<td>Technology Upgrade</td>
<td>Provide additional interior and exterior IP cameras</td>
<td>$40,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0091</td>
<td>4/02/18</td>
<td>Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior doors.</td>
<td>$36,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0092</td>
<td>3/8/18</td>
<td>Entry Sidewalk, F4</td>
<td>Safety</td>
<td>Holes in sidewalk are tripping hazard. Replace pavement</td>
<td>$1,800</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0093</td>
<td>3/8/18</td>
<td>Accessible Route, E5</td>
<td>Safety / Code</td>
<td>Gap in sidewalk to curb is extremely excessive. Clean out and grout to remove tripping and accessibility hazard.</td>
<td>$900</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0094</td>
<td>3/8/18</td>
<td>Sidewalk tripping hazard D5, D5, C6, C5, C7,C7,D7, H6, H8, H7, I5</td>
<td>Safety</td>
<td>Tripping hazard due to separation in sidewalk horizontally and/or vertically. Replace pavement adjacent to joint</td>
<td>$5,700</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0095</td>
<td>3/8/18</td>
<td>Stop Sign, I8</td>
<td>Safety</td>
<td>Traffic signs should be mounted to AASHTO (WisDOT) standards for sizes and heights.</td>
<td>$850</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HS-0096</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0097</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HS-0098</td>
<td>3/8/18</td>
<td>Poor concrete at ramp, I6</td>
<td>Maintenance</td>
<td>Replace deteriorated concrete.</td>
<td>$540</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0099</td>
<td>3/8/18</td>
<td>Approach apron to track, C13</td>
<td>Maintenance</td>
<td>Mud and debris is being carried onto the track. Provide a longer paved apron to prevent this (12x70).</td>
<td>$6,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0100</td>
<td>3/8/18</td>
<td>Tree removal, E Practice area</td>
<td>Maintenance</td>
<td>There are numerous trees growing in the fence. An annual program should be developed to eradicate these on a regular basis so they don’t become such a problem.</td>
<td>$6,500 + $400 per year</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0101</td>
<td>3/8/18</td>
<td>Fence used as wall by neighbor, E Practice area</td>
<td>Maintenance</td>
<td>Neighbor should be asked to stop using the fence as a wall. Fence is being damaged by this use as a wall for wood storage. Middle along the east side.</td>
<td>$550</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

La Crosse, WI

HS-48
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS-0102</td>
<td>3/8/18</td>
<td>Field top dressing program to reduce holes, E Practice area</td>
<td>Safety</td>
<td>Fields should be top-dressed to reduce low and uneven areas. Holes and uneven ground pose a danger to active users. Topdress low areas up to 1 inch per year (0.25 every three weeks). Top dressing can be mostly sand with some compost.</td>
<td>$4,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HS-0103</td>
<td>3/8/18</td>
<td>Chain Link Fence coming apart, D13, E13, F13</td>
<td>Maintenance</td>
<td>Chain link fence along the east side of the track has the top rail dislocated for the posts.</td>
<td>$850</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
FACILITIES CONDITION ASSESSMENT

Facility: Onalaska Middle School
711 Quincy Street
Onalaska, WI 54650

Building Age:
1978 Original Middle School Construction
1999 Central Kitchen Expansion
2006 Classroom Remodeling

Building Data:
Construction Type: Type 2B – Non-combustible, non-sprinklered

Building Area 119,036 SF

Site

Parking 79 Stalls
1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

The 1978 construction of the new middle school was comprised of steel framed structure of steel columns, wide flanged beams and open web steel bar joists and steel decking. The exterior walls were constructed of light-gauge steel studs clad with exterior gypsum sheathing and a textured acrylic stucco. A continuous fascia band of ribbed metal panels was applied to the wall area above the stucco surface. The interior side of the walls were covered with a base layer of ½” gypsum board and covered with a vinyl covered fiberboard. The metal stud wall cavity was insulated with 3-1/2 inch R-11 batt insulation.

Observations
The exterior stucco wall cladding was cleaned and recoated- 2017.
Exterior control joints were re-sealed - 2017

1.2 ROOFING

The entire building with the exception of the north half of the Central Kitchen was re-roofed in 2006 ($506,000) which involved replacing the original ballasted single-ply rubber membrane with a new mechanically attached 60-mil rubber membrane over new insulation placed over the existing R-2 perlite insulation. The roof system was specified as to include a 20-year ‘full-system warranty’.

The 1999 Central Kitchen Addition consisted of a 60-mil ballasted single-ply rubber membrane over 5 inch EPS insulation.

Observations
The 2006 re-roofing appears in satisfactory condition. The ballasted roof system above the 1999 Central Kitchen addition also appears in satisfactory condition with no significant signs of deterioration.
Recommendations
If the decision is made to replace the aluminum framed clerestory windows in the sloped shed roof areas, it is recommended that the sill conditions be raised and re-flashed per current recommendations of the roof membrane manufacturer.

1.3 DOORS & WINDOWS
The original windows from the 1978 construction project are still in place and consist of a shallow depth thermally broken aluminum frame with 1 inch insulated glass.

The main south side entrance is of hollow metal doors and frames. The east side entrance is of standard aluminum entrance doors, fully-glazed.

Service doors are hollow metal.

ADA door operators were added to the Quincy Street entrance.

Observations
The existing aluminum windows are framed within the metal stud exterior walls. The wall area below the windows are clad with the same ribbed metal fascia panels.
Aluminum entrances are showing signs of significant wear from heavy usage.

Hollow metal doors and frames are also showing significant signs of typical wear and abuse.

Recommendations

Remove and replace existing aluminum windows with new thermally improved aluminum windows with high performance insulated glass. Replace wall section below windows with abuse resistant cladding over additional rigid insulation.

Aluminum entrances can likely remain for the present but should be included on the list for future replacement.

In general, hollow metal steel doors and frames can also continue to be used and repair as necessary. Replacement with new galvanized steel doors and frames should be considered for inclusion on any list for future building upgrades.

2.0 BUILDING INTERIOR

2.1 FLOORING

Flooring materials include carpet, vinyl composition tile, ceramic tile, and wood parquet (gymnasium). Corridors are typically carpeted.

Observations

Corridors and main office areas have been re-carpeted (7/1/2015).

Recommendations

No immediate attention is necessary.

2.2 CEILINGS

The majority of the rooms have suspended acoustical tile. Locker rooms have plastered ceilings and the LMC is partially finished with stained wood paneled sloped ceilings.

Observations

Ceiling tile and grid in the science labs are stained and corroded. Ceilings in all classrooms are 2x4 and show extreme deterioration.

Recommendations

Replace worn areas of acoustical ceiling tile and vinyl faced ceiling panels (toilet rooms). Replace all 2x4 tiles with 2x2 tiles in all areas.
2.3 WALLS
Interior partitions bordering corridors consist of metal studs with gypsum board and thincoat plaster. Classroom partitions are of metal stud, gypsum board and vinyl faced fiberboard.

Observations
Wall surfaces are generally in good shape. Some corners are damaged from high circulation traffic and could be protected with cornerguards.

Hallways have been repainted (7/1/2015)

2.4 INTERIOR DOORS & FRAMES
Interior doors are generally solid core oak veneer wood doors in hollow metal frames. Fire rated door assemblies include wire glass lites.

Observations
Wood doors exhibit normal deterioration from the years of service. Replace hardware at gymnasium doors for Code compliance (4/14/2015).

Recommendations
1. Wood doors can continue to be used and replaced on a case by case basis.
2. Hollow metal door frames should be repaired and repainted.
3. Wire glass should be removed and replaced with new fire-rated safety glass.
4. Continue to replace latchset hardware with new lever handled hardware.

2.5 TOILET PARTITIONS
Toilet partitions include both metal and solid plastic.

Observations
Metal toilet stall partitions (locker rooms only) show typical damage and deterioration from heavy use and abuse. Partitions damaged by rust, abuse, and vandalism have been replaced throughout the facility.

Recommendations
Partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.

2.6 SCIENCE LAB CLASSROOMS
Existing Conditions
The original lab work counters are still in place and consists of epoxy resin countertops on a steel framed support system. The work surfaces are worn and shows the signs of 30+ years of use. Sliding wood panel fronts were added as a means to close off the undercounter space and to conceal storage of boxed science kits.
The epoxy resin counters include a continuous shallow depth drainage trough that slopes to a single drain at the end of the sections of countertops. Gooseneck water faucets are positioned above the drainage trough but splashes water on countertop surfaces outside of the trough (poor design).

The existing deck mounted gas turrets are not used and could be removed. The work surfaces also include pedestal type electrical receptacles, however, the lecture area of the classroom is noticeable short of wall receptacles requiring suspended extension cords. Sound transmission from the adjacent music rooms remains a problematic. The corridor between the science rooms and the band / vocal rooms are used as instrumental practice areas. The science instructors also noted that exhaust ventilation is ineffective and needs to be rebalanced.

Recommendations

1. Replace lab work surfaces and steel framed understructure with new wood laboratory cabinets and epoxy resin tops with integral epoxy resin sinks.
2. Replace fume hood with new two-sided demonstration hood that would permit student access from the classroom side while allowing the instructor to work from
the prep room side.
3. Provide in each of the science labs, handicap accessible work surface section with open knee space below to permit access to lab fixtures and sinks for wheelchair bound students.
4. Refinish base and wall cabinets in prep room with new cabinet hardware.

2.7 MIDDLE SCHOOL GARAGE

2.1 A 30’ x 24’ wood framed storage garage is located on the north side of the school and utilized for miscellaneous equipment. The structure consists of a wood stud frames walls on a concrete floor slab, prefabricated wood trusses, vinyl lap siding and asphalt shingled roof. There are three pairs of hollow metal doors on the south side and a single pair on the north wall.

Recommendations
In general, the garage structure appears to be in satisfactory condition with the exception of a small damaged area of vinyl siding. The asphalt shingles should provide several more years before it becomes necessary to replace the shingles.

The hollow metal doors should be scheduled for refinishing with a high-performance paint coating to extend the life of the doors.
3.0 HANDICAP ACCESSIBILITY

3.1 ACCESSIBLE ROUTE

Existing Conditions

The Wisconsin Commercial Building Code defines an “accessible route” as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site amenities such as staff parking lots and bus loop driveways. The Middle School site currently provides accessible routes from the south side bus drop-off area, and main building entrance on the east end.

Recommendations

No additional work is required.

3.2 ACCESSIBLE PARKING

Where parking is provided, accessible parking spaces shall be provided as follows:

<table>
<thead>
<tr>
<th>Total Parking Spaces Provided</th>
<th>Required Number Of Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>79</td>
<td>4</td>
</tr>
</tbody>
</table>

3.3 ACCESSIBLE ENTRANCE

Existing Condition

Door operators have been provided at southside Entrance ‘A’, Entrance ‘C’ on the East end.

Recommendations

No additional work is required.

3.4 ACCESSIBLE INTERIOR CIRCULATION

With the exception of the upper level Boiler Room, all rooms are located on one level. All classrooms, corridors and auxiliary spaces were designed for compliance with ADA guidelines for interior circulation.

Recommendations

No action required.

3.5 ACCESSIBLE TOILET FACILITIES

The 2006 classroom remodeling project included the remodeling of existing boys’ and girls’ toilet rooms located in the southeast corner of the building. The work involved modifications to toilet compartment, adding grab bars, new handicap accessible lavatory, and adding an accessible height drinking fountain. All other toilet room facilities do not comply with the ADA requirements for accessible toilet facilities, including the toilet rooms located in the locker rooms.

Recommendations

Convert and remodel additional toilet rooms to handicap accessible.

Replace
3.6 ACCESSIBLE LOCKER ROOMS & SHOWER FACILITIES

Existing Conditions

The existing locker rooms and shower facilities do not comply with section 603 of the ADA guidelines. Where bathing facilities are provided, at least one shower complying with the general ADA requirements for shower stalls shall be provided (Section 213.3.6). Where it is technically infeasible to provide rooms in accordance with general requirements (applicable to new construction), one room for each sex shall comply with Section 803 for turning space, door swings, bench seats, coat hooks and shelves.

Recommendations

In Boys Locker Room, remodel P.E. Office and adjoining toilet room/shower stall into an ADA compliant toilet / shower room that could be utilized by students or P.E. staff.

The Girl’s Locker Room currently includes a separate shower stall that could serve as a handicap stall. Another option would be to remodel the gang showers into private stalls, in which case one stall would serve as the handicap accessible shower stall.
Onalaska Middle School
Site Facility Assessment Comments

The Middle School has had a significant amount of sidewalk correction as well as new asphalt paving on the north side. The remaining sidewalks and paving are in serviceable condition and will not need replacement in the foreseeable future. There were some specific places that are identified in the Assessment that should be addressed in the near future due to code or safety concerns. There is one small area of curb along the drop-off area that is an obvious tripping hazard that should be replaced immediately. The site is not in compliance with ADA code for parking. As an older facility, improvements to surfaces such as slope changes are not required however, signing and striping are not “grandfathered” and where signing and striping can be implemented to create current code compliant parking it is required to be done at the time of ANY sealcoat and restripe operation including signage meeting current ADA standards. We recommend that the ADA parking be moved adjacent to the building by adding a compliant ramp along the sidewalk. This would be in line with ADA rules.
Middle School
Onalaska, Wisconsin

Plumbing

The following report is the result of a site visit by Bob Novak from Tailored Engineering, March 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units provide adequate hot water for the building they are 199MBH input each.

2. The building is served by a Simplex Hellenbrand H200M water softener. The water softener is softening only the hot water. Water hardness levels in this part of the state typically require both the hot and cold water to be softened.

B. Recommendations

1. Instantaneous water heating equipment is required to be maintained for scale on a regular basis. Annual maintenance shall be provided on equipment as required.

2. Existing water softener may be capable of providing soft water for the entire domestic water demand. Softener would have to move to water service entrance.

C. Expected Remaining Lifespan

1. The expected remaining lifespan of the water heaters is 5 years

2. The expected remaining life cycle of the water softener is 10 years.

Plumbing Fixtures

A. Observations

1. Plumbing fixtures located within the toilet rooms and classrooms are generally in good condition.

2. Toilet rooms are not ADA compliant per today’s standards.

B. Recommendations

1. Toilet rooms should be modified to be ADA compliant.
C. Expected Remaining Lifespan

1. The expected remaining lifespan of the Plumbing Fixtures is 20 years. The estimated cost to replace the fixtures and associated piping is $2,500 per fixture.

Sanitary Piping

A. Observations

1. Sanitary piping is SCH 40 PVC.

B. Recommendations

1. None

Storm Piping

A. Observations

1. The owner indicated no problems with the storm piping, roof drains or storm drainage for the building.

2. Piping materials appear to be holding up well.

B. Recommendations

1. Continue to monitor the storm piping system.

Domestic Water Piping

A. Observations

1. Original portions of the building are provided with a galvanized domestic water piping. Additions and renovations have been piped using Type “L” copper tube.

2. In some areas PEX tubing was installed to provide circulation to the domestic hot water system. This system is not performing as expected.

3. The building is supplied by a 4” domestic water service with a 4” water meter. A separate water meter and backflow preventer has been provided for irrigation to the athletic fields. The existing water service is not large enough to support a fire protection system for the building should one be desired in the future.
4. There is a deduct water meter for HVAC cooling using cold water. This piping has a 4" RPBP for backflow protection.

5. Water pressure from city is over 80 PSI, there is a pressure reducing valve, Building pressure is 65 PSI.

B. Recommendations

1. Galvanized domestic water piping should be scheduled for replacement.

2. The domestic water piping for this facility should be evaluated and potentially replaced to correct the problems with entire domestic water piping system.

3. Additions or major renovations to the building may require the building to be provided with a fire protection system. A new 6" domestic water service should be evaluated for the building.

4. Entire Water system should be softened.

C. Expected Remaining Lifespan

1. Should a new 6" water service be desired in the future the estimated cost is would be $50,000. Fire protection cost would be estimated at $3.00 per sq.ft..

2. Remaining galvanized water piping replacement for this building is estimated at $60,000. The remaining life expectancy of the galvanized piping is 5 years.
HVAC

The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on August 2, 2013 with a follow up visit to update the status of the building on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. The building heating system is a hot water system that consists of two (2) Thermal Solutions sealed combustion boilers rated at 1,760,000 btu output each and one (1) Burnham packaged boiler rated at 1,116,000 btu output which is utilized as a stand-by boiler. The pumping system is a primary-secondary arrangement with constant flow system pumps. Each boiler is served by an inline primary pump while main and stand-by pumps are piped in parallel in the secondary loop.

2. The building cooling system is a central chilled water system that consists of a 120 ton Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-only arrangement with two constant flow pumps piped in parallel.

3. The building is served by constant volume air handling units and air handling units with hot water VAV and booster coil reheat control. The air handling units have been replaced in recent years with newer modular Trane equipment, but the distribution ductwork and zoning were not replaced at that time.

4. The main data server room is served by a computer room air conditioning unit with standalone control.

5. The kitchen is served by two (2) packaged rooftop heating and cooling units with standalone electronic programmable thermostats. One of the four large kitchen exhaust hoods is served by a gas-fired makeup air unit.

6. The building is controlled by a Trane direct digital control system.

B. Observations

1. The boilers are in good condition and, with a proper maintenance program, should continue to serve the building for another 10-15 years.
2. The Taco hot water system pumps have experienced problems with leaking seals. The seals have been replaced previously and are leaking again.

3. The Owner reported that the gymnasium has had difficulty delivering proper airflow even after having the heating and cooling coils cleaned. Both the gym and commons areas have difficulty reaching setpoint on hot/humid days when the spaces are occupied.

4. The Owner also reported that the kitchen experiences pressure issues when the exhaust hoods are in operation. This is likely due to a lack of makeup air.

5. There have been numerous complaints of systems not maintaining proper temperatures throughout the building in both summer and winter. Air distribution and zoning appear to be a significant problem.

C. Recommendations

1. The hot water and chilled water systems serving the building are overall in good operating condition. However, the constant flow pumping systems serving the hot water and chilled water systems are inefficient from an energy standpoint. Revise the hot water system to a primary-secondary variable flow pumping system by utilizing variable frequency drives and pressure reset control sequences to optimize operation and more closely match the actual building loads. Revise the chilled water system to a variable primary flow system with a similar approach. At that time, the existing Taco hot water system pumps should be replaced.

2. Revise/replace the existing ductwork distribution and zoning to properly serve the building layout that is now in place since revisions have taken place over the years. Replace all constant volume booster coil reheat systems with hot water VAV systems to improve energy efficiency and zone control.

3. Replace the existing air handling systems that are currently serving the gymnasium and the commons with new equipment that is sized to adequately handle the space loads.

4. Continue to maintain the existing Trane digital control system. We recommend eventually replacing the system with a new Schneider Electric/Tridium Niagara system to match the rest of the school district.
Electrical System Review (Updated: 3/02/2018)
The following report is the result of a site visit by Muermann Engineering, LLC that occurred on August 2, 2013 and by Galileo Consulting Group LLC on March 8, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The building was originally constructed in 1978. The central kitchen was added in 1999.

Main Electrical Service

Existing Data

A. This school has a 2,500 amp 480 volt 3-phase 3-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT’s cabinet is pad mounted outside next to the utility transformer. The meter socket is mounted inside next to the main switchboard. The main service switchboard consists of two 2,500 amp circuit breaker distribution sections and one 2,500 amp fused switch distribution section. This switchboard has 6 main disconnects including 4 fused switches and two fused bolted pressure switches. This service equipment was installed in 1978. The switchboard is a Square D. There are 6 spare circuit breaker spaces in the switchboard.

B. The central kitchen has a 600 amp 480Y/277 volt 3-phase 4-wire service. The service is fed from a utility owned pad mounted transformer. The CT’s are integral to the main switchboard. The meter socket is mounted inside next to the main switchboard. The switchboard has a 600 amp main circuit breaker. There are no available spaces left in this switchboard for additional circuit breakers.

Observations

A. The main service switchboard does not have a surge protection device.

Expected Remaining Lifespan

A. The expected remaining lifespan of the main service switchboard is about 10-15 more years.

Recommendations

A. Provide surge protection device on main service. $4,000
Panelboards

Existing Data
A. The panelboards are Square D.
B. The panelboards were installed in 1978.

Observations
A. The panelboards are generally not full and have on average a few spaces for additional circuit breakers.

Expected Remaining Lifespan
A. The expected remaining lifespan of the panelboards is about 10-15 more years.

Recommendations
A. None.

Lighting Fixtures and Controls

Existing Data
A. The classrooms have 2x4 acrylic lens 2-lamp fixtures that are 6 years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and one low voltage momentary contact switch controlling a lighting control relay panel. The light fixtures are on 8’ X 8’ centers.
B. The corridors have 2x4 acrylic lens 2-lamp fixtures that are six years old. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors to control the lights. There are 24/7 night light fixtures. The fixtures are spaced 12’ on center.
C. Exterior perimeter light fixtures and parking lot lights have been upgraded to LED.
D. One hallway has battery powered emergency lights.

Observations
A. There is no automatic control for the parking lot lighting.
B. There is no emergency lighting in the corridors with the exception of one corridor.
Expected Remaining Lifespan
A. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

Recommendations
A. Provide timeclock to control the parking lot lighting. $2,000
B. Add emergency ballast to existing light fixtures in corridor to provide code required emergency lighting. Budget - $400/fixture, for a total of $20,000.
C. Fluorescent lighting is becoming obsolete and is not energy efficient compared to LED. It is recommended that the Onalaska School District budget to convert all their schools to energy efficient LED lighting with New Digital Programmable Lighting Controls to conserve energy. Budget - $476,144.
D. Replace existing fluorescent lighting fixtures upon failure with new LED fixtures until total conversion is complete. Budget $200/fixture for material and labor.
E. For Specialized Instruction areas such as; Special Education, Childrens Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.00/sq.ft.

Wiring Devices
Existing Data
A. The receptacles and toggle switches are commercial grade 15A with stainless steel plates.

Observations
A. Switches and receptacles are in good working order.
B. Many receptacle circuits are shared between two classrooms which can lead to the circuit becoming overloaded.

Expected Remaining Lifespan
A. The expected remaining lifespan of the wiring devices is about 15 more years.

Recommendations
A. Replace any broken switches and receptacles. $30 EA
B. Add additional branch-circuits and receptacles to classrooms as required. $380 EA
C. Recommend a minimum of one branch-circuit per classroom.
D. Budget - $19,000.
Fire Alarm System

Existing Data
A. The fire alarm is an EST 3 addressable system. The system was recently upgraded. The fire alarm control panel is located in the east mechanical room.
B. There are pull stations by all exterior doors.
C. There are wall mounted horn strobe devices in the corridors and classrooms. Many of these old devices were reused when the system was upgraded. New EST devices have been added where required by code.
D. There are smoke detectors in the corridors and storage rooms. There are heat detectors in mechanical rooms.
E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
F. All fire alarm cabling is installed in conduit.

Observations
A. The oldest notification appliances (horn/strobes) are obsolete and have reached their end of life cycle and need to be updated.

Expected Remaining Lifespan
A. The majority of the system has reached its expected life expectancy.

Recommendations
A. Consider upgrading to an audio evacuation fire alarm system:
 1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
 2. This building is not sprinklered.
 3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
 4. Budget estimate to upgrade to audio evacuation system installation - $85,000.

Clock System

Existing Data

 B. A new Master Clock Controller was installed in 2017, as well as new clocks throughout the facility.
 C. There are battery powered clocks in the classrooms, offices, and other public areas.
 D. The bell tone is controlled by the master clock controller.
 E. The clocks are new and recently installed.

Expected Remaining Lifespan

 F. The master controller will last 15-20 years with periodic hardware and software updates as required. The clocks are new and recently installed.

Recommendations

 G. None.
Intercom System

Existing Data

A. There is a Telecor intercom system. This system is 12 years old and was installed in 2006. The amplifier is located in the IMC storage room.

B. The intercom is accessed through the intercom phones in the classrooms. The intercom is also accessed through the Mitel IP phone line which allows users with a code to perform a building page from any Mitel phone.

C. There are recessed ceiling mounted intercom speakers in the classrooms and corridors. There are recessed speakers in the exterior soffits near all doors.

D. The bell system is toned through the intercom speakers.

Observations

A. The intercom system is in adequate working order.

B. Additional intercom speakers can be added.

Expected Remaining Lifespan

A. 10 – 15 more years.

Recommendations

A. None.
Phone System

Existing Data

B. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

A. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the east janitor room, laundry room, and MDF data closet.

Observations

A. Additional phones can be added to the system.

Expected Remaining Lifespan

A. The expected remaining lifespan of the Mitel 3300 IP phone system is about 10 more years.

Recommendations

A. Replace all existing CAT3 wiring and jacks with CAT6. Budget $25,000

Data System

Existing Data

A. The MDF data rack is located in main IT room. There is one floor mounted data rack. There is one additional IDF data rack located in the IMC A/V storage room.

B. The IDF data racks are connected to the MDF data rack with multi-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

C. The newest data cable is CAT6, the older cable is CAT5 plenum rated which is routed to patch panels in the data rack.

D. There is one CAT6 Leviton patch panel in the data rack. The rest of the patch panels are CAT5.

E. There is a rack mounted UPS.
F. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of approximately 1 access point per 2-classrooms. The Computer Network wireless access system is inadequate for today's needs and for anticipated future needs.

Observations
A. The CAT6 data cabling system is in good working order.
B. The CAT5 data cabling system is not working properly and causing errors with the new network equipment.
C. Additional horizontal runs of data cable can be added to the existing rack.

Expected Remaining Lifespan
A. The expected remaining lifespan of the CAT6 data cabling is about 12-15 more years.
B. The expected remaining lifespan of the CAT5 data cabling is about 0-1 more years.
C. The expected remaining lifespan of the network equipment is about 7-10 more years.

Recommendations
A. Replace the old existing CAT3 and CAT5 cable, jacks and patch panels with new CAT6, add additional equipment racks, patch panels and switches. Budget $75,000
B. Install additional Wireless Access Points to increase density and coverage to 1-Access Point per classroom. Estimate 25 more Access Points required. Budget $800/Each

CATV System
Observations
A. There is a CATV service to this building. CATV splitters are located in the east janitor's closet and the laundry room.
B. There is a CATV jack in each classroom.
C. CATV system is no longer in use.

Expected Remaining Lifespan
A. Not Applicable.

Recommendations
A. Remove all CATV equipment, jacks and wiring. Budget $7,000
Security System

Existing Data
A. There is an older Ademco security system. The security control panel is located in the main electrical room.
B. The security system has motion sensors in the corridors.
C. No contact switches on exterior doors.

Observations
A. Security system is in adequate working order.
B. Additional security devices can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 2 more years.

Recommendations
A. Upgrade system head-end equipment and devices.
B. Security system replacement cost. $500/security device
C. Provide exterior contact switches. $400/Each, 48 contact switches for a total of $20,000
D. Budget for system replacement - $30,000.
CCTV System

Existing Data
A. There is a server based IP CCTV system used throughout all the buildings in the district.
B. There are interior and exterior fixed color IP cameras.
C. Current Network recorder has the capability of recording for 30 days.

Observations
A. The CCTV system is in adequate working order.
B. Additional cameras should be added for better security coverage.

Expected Remaining Lifespan
A. The expected remaining lifespan of the CCTV system is about 5 - 7 more years.

Recommendations
A. Provide additional interior and exterior IP Cameras. $1,000/camera for interior, $2,000/camera for exterior. Estimate 5 exterior cameras and 10 interior cameras for a total of $20,000.

Access Control System

Existing Data
A. There is an RS2 System door access control system installed for the District in 2015 - 2016.

B. There are multiple exterior doors with an electric strike and key fob reader.

Observations
A. The access control system is in good working order.
B. Additional doors can be added to this system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 10-15 more years.

Recommendations
A. Install electric strikes, key fob readers, door contacts, etc on additional exterior doors as needed for additional security and building use. Budget $3,000/door for an estimate of eleven additional doors for a total of $33,000.
Facility Condition Assessment
Onalaska Middle School

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Date Entered</th>
<th>Key Description</th>
<th>Reason</th>
<th>Description</th>
<th>Est. Cost</th>
<th>Action Date</th>
<th>Priority Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>MS-0001</td>
<td>9/19/13</td>
<td>Re-glazing Clerestory Windows</td>
<td>Maintenance</td>
<td>Remove and re-glaze insulated glass in clerestory windows above library.</td>
<td>$60,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0002</td>
<td>9/19/13</td>
<td>Window Replacement</td>
<td>Energy Conversation</td>
<td>Remove and replace existing aluminum slider windows with new thermally efficient aluminum windows and insulated glass.</td>
<td>$40,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0003</td>
<td>9/19/13</td>
<td>Door Hardware Replacement</td>
<td>Security Upgrade</td>
<td>Remove and replace existing door locksets with ADA compliant Schlage ‘Everest’ Series locksets.</td>
<td>$55,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MS-0004</td>
<td>9/19/13</td>
<td>Acoustical Ceiling Tile Replacement</td>
<td>Scheduled Replacement</td>
<td>Replace areas suspended acoustical tile</td>
<td>$52,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0005</td>
<td>9/19/13</td>
<td>Paint existing exterior E.I.F.S. wall surfaces.</td>
<td>Maintenance</td>
<td>Prep all exterior EIFS wall surfaces and spray-apply new elastomeric coating.</td>
<td>$20,100</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0006</td>
<td>9/19/13</td>
<td>Re-glaze Fire Doors</td>
<td>Code Compliance</td>
<td>Replace wire glass in fire-rated door assemblies with current Code compliant fire-rated safety glass.</td>
<td>$6,200</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0007</td>
<td>9/19/13</td>
<td>Science Lab Equipment</td>
<td>Equipment Replacement</td>
<td>Replace laboratory island cabinets, work surfaces, fixtures and demonstration fume hood.</td>
<td>$220,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0008</td>
<td>10/10/13</td>
<td>ADA Parking Signage</td>
<td>Code Compliance</td>
<td>Raise bottom of signs to 5’ above grade (2). Site grid location D7, Additionally, the ADA parking should be moved adjacent to the building by adding a curb ramp.</td>
<td>$800 Sign $1,900 ramp</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0009</td>
<td>10/10/13</td>
<td>Tree limb removal.</td>
<td>Safety</td>
<td>Remove dead lower branch at spruce. Site Grid Location E8</td>
<td>$50</td>
<td>2014</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0010</td>
<td>10/10/13</td>
<td>Replace Broken sidewalk</td>
<td>Safety</td>
<td>Replace entrance area-replace flatwork where vertical separation is more than ¾”. (2 locations) Site Grid Location E5</td>
<td>$1,200</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>-------------</td>
<td>--------------</td>
<td>----------------------------</td>
<td>----------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MS-0011</td>
<td>10/10/13</td>
<td>Replace Broken Curb</td>
<td>Safety</td>
<td>Replace 10’ section broken curb. Site Grid Location B5</td>
<td>$800</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MS-0012</td>
<td>10/10/13</td>
<td>ADA Parking Stalls</td>
<td>Code Compliance</td>
<td>Add hdp. Accessible parking stall and signage.</td>
<td>$800</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0013</td>
<td>10/10/13</td>
<td>Water Heater Modifications</td>
<td>Maintenance</td>
<td>‘New’ water heater accommodates entire building demand.</td>
<td>$3,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>MS-0014</td>
<td>10/10/13</td>
<td>Replace Plumbing Fixtures</td>
<td>Replacement</td>
<td>Replace worn out water closets, urinals and lavatories with new ADA compliant water use efficient fixtures. ($2500/fixt.)</td>
<td>$125,000</td>
<td>9/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0015</td>
<td>10/10/13</td>
<td>Replace Laundry Drain</td>
<td>Code Compliance</td>
<td>The drain for the laundry machines does not comply with plumbing code and needs to be reconfigured and reconnected to the existing sanitary sewer.</td>
<td>$3,500</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MS-0016</td>
<td>10/10/13</td>
<td>Water Piping Replacement</td>
<td>Replacement</td>
<td>Replace remaining worn domestic water piping (copper, galvanized, PEX) with new copper tubing or Schedule 80 CPVC.</td>
<td>$48,000</td>
<td>9/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0017</td>
<td>10/10/13</td>
<td>Variable flow pumping</td>
<td>Energy Efficiency/Control</td>
<td>Revise the current constant flow pumping system to variable flow by replacing pump motors with inverter duty motors and installing variable frequency drives w/ different pressure control.</td>
<td>$75,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0018</td>
<td>10/10/13</td>
<td>Variable Flow Pumping (chilled water system)</td>
<td>Energy Efficiency/Control</td>
<td>Revise the current constant flow pumping system to variable flow by replacing pump motors with inverter duty motors and installing variable frequency drives w/ different pressure control.</td>
<td>$60,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0019</td>
<td>10/10/13</td>
<td>Remodel Duct Systems</td>
<td>Energy Efficiency/Control</td>
<td>Revise and/or replace the existing ductwork distribution systems to properly zone all areas of the building. Replace all booster coil reheat system with VAV systems.</td>
<td>$1,100,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0020</td>
<td>10/10/13</td>
<td>Gym &Commons AHU System Replacement</td>
<td>Capacity and Control</td>
<td>Replace the existing air handling systems serving the gymnasium and commons areas to provide adequate heating and cooling capacity and control.</td>
<td>$225,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>------------</td>
<td>--------------</td>
<td>--</td>
<td>----------------------</td>
<td>---</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MS-0021</td>
<td>10/10/13</td>
<td>Add Surge Protection</td>
<td>Equipment Upgrade</td>
<td>Add surge protection device to main service switchboard</td>
<td>$4,000</td>
<td>7/1/17 Complete</td>
<td>3</td>
</tr>
<tr>
<td>MS-0022</td>
<td>10/10/13</td>
<td>Add Parking Lot Lighting Control</td>
<td>Energy Conservation</td>
<td>Provide timeclock control for existing parking lot lighting</td>
<td>$2,000</td>
<td>9/1/15 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0023</td>
<td>11/12/13</td>
<td>ADA Door openers</td>
<td>ADA</td>
<td>2 openers at Quincy St. entrance @ $3,500 ea.</td>
<td>$7,500</td>
<td>9/1/15 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0024</td>
<td>10/10/13</td>
<td>Add exterior emergency lighting</td>
<td>Code Compliance</td>
<td>Add exterior emergency egress fixtures $500/door</td>
<td>$12,500</td>
<td>7/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0025</td>
<td>10/10/13</td>
<td>Add exterior security lighting</td>
<td>Security Upgrade</td>
<td>Add additional exterior LED wall pack fixtures for security $400/fixture</td>
<td>$10,000</td>
<td>7/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0026</td>
<td>10/10/13</td>
<td>Classroom Power Upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacle.</td>
<td>$19,000</td>
<td>7/1/17 Complete</td>
<td>3</td>
</tr>
<tr>
<td>MS-0027</td>
<td>1/31/14</td>
<td>Clock system replacement</td>
<td>Replacement</td>
<td>Replace failing clock system with new front end and partial inventory of new clocks</td>
<td>$15,000</td>
<td>8/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0028</td>
<td>3/4/14</td>
<td>Add bathroom to CD room</td>
<td>Operational</td>
<td>Add a restroom in the CD room per Jed K. further modifications may need extra money?</td>
<td>$35,000</td>
<td>7/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0029</td>
<td>3/25/2014</td>
<td>Replace Toilet Partitions</td>
<td>Safety/operations</td>
<td>Replace rusted, vandalized, broken toilet partitions throughout facility</td>
<td>$37,384</td>
<td>9/1/15 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0030</td>
<td>4/22/14</td>
<td>Replace parking lot lights</td>
<td>Energy Conservation</td>
<td>Finish installing LED lights in the parking lot</td>
<td>$25,000</td>
<td>7/17/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0031</td>
<td>4/24/14</td>
<td>Security System Upgrade</td>
<td>Security Upgrade</td>
<td>Upgrade existing security system with new high-end equipment, wiring, and devices as required</td>
<td>$30,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0032</td>
<td>2/26/15</td>
<td>Hallway Flooring</td>
<td>Maintenance</td>
<td>Install new carpet in hallways and main office areas</td>
<td>$64,141</td>
<td>8/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>MS-0033</td>
<td>2/26/15</td>
<td>Paint Hallways</td>
<td>Maintenance</td>
<td>Paint hallways a neutral color with a strip of school colors above the lockers</td>
<td>$11,000</td>
<td>7/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------</td>
<td>---</td>
<td>------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MS-0034</td>
<td>4/14/16</td>
<td>Hardware replacement</td>
<td>Code Compliance</td>
<td>Replace gym door hardware for egress compliance</td>
<td>$6,000</td>
<td>1/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>MS-0035</td>
<td>3/15/18</td>
<td>Provide LED lighting and new digital programmable controls throughout the school</td>
<td>Energy Conservation</td>
<td>Replace all existing fluorescent lighting fixtures with new LED throughout the school. Provide new computer network programmable digital lighting controls</td>
<td>$476,144</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MS-0036</td>
<td>3/15/18</td>
<td>Tunable LED lighting fixtures</td>
<td>Technology Upgrade</td>
<td>Provide tunable LED lighting in special Ed and similar rooms</td>
<td>$26,400 ($4.00/sq.ft.)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MS-0037</td>
<td>3/15/18</td>
<td>Upgrade to Voice Evac Fire Alarm System</td>
<td>Technology Upgrade</td>
<td>Replace existing fire alarm system with a new Voice Evac System</td>
<td>$85,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MS-0038</td>
<td>3/25/2014</td>
<td>Data Cable Replacement</td>
<td>Technology Upgrade</td>
<td>Replace existing CAT3 phone cable and jacks with new CAT6 data cable and jacks. Replace existing CAT5 data cable and jacks with CAT6. Remove existing CATV wiring and Jacks</td>
<td>$107,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MS-0039</td>
<td>3/15/2018</td>
<td>Additional Wireless Access Points</td>
<td>Technology Upgrade</td>
<td>Provide approximately 25 more Access Points</td>
<td>$20,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MS-0040</td>
<td>11/21/13</td>
<td>Replace CCTV System</td>
<td>Security Upgrade</td>
<td>Install additional IP CCTV system cameras to improve school Security camera coverage.</td>
<td>$40,000</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MS-0041</td>
<td>11/21/13</td>
<td>Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior doors.</td>
<td>$21,000</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MS-0042</td>
<td>3/8/18</td>
<td>Broken sidewalk, B6</td>
<td>Safety</td>
<td>SE corner of school – replace sidewalk where vertical due to holes or differential to curb separation is more than ¾". (3)</td>
<td>$1,800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MS-0043</td>
<td>3/8/18</td>
<td>Ash trees, Various locations</td>
<td>Maintenance</td>
<td>Almost all of the ash trees on the site show indications of Emerald Ash Borer. These trees should be removed immediately. (14)</td>
<td>$7,000</td>
<td>Started in 2017</td>
<td>1</td>
</tr>
<tr>
<td>MS-0044</td>
<td>3/8/18</td>
<td>Multi-stem Silver Maple, A5</td>
<td>Maintenance</td>
<td>Silver Maple in front of the school has very poor branching structure and should be removed.</td>
<td>$800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MS-0045</td>
<td>3/8/18</td>
<td>Driveway apron is not City standard and the rough edge is a tripping hazard, A6</td>
<td>Maintenance</td>
<td>Remove and replace apron with the City standard.</td>
<td>$2,200</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>MS-0046</td>
<td>3/8/18</td>
<td>Sidewalk tripping hazard, E7</td>
<td>Maintenance</td>
<td>SE corner of Kitchen – replace sidewalk where differential to curb separation is more than ¾".</td>
<td>$800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>MS-0047</td>
<td>3/8/18</td>
<td>Soften Entire Building</td>
<td>Maintenance</td>
<td>Relocate water softeners to water service entrance</td>
<td>$30,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MS-0048</td>
<td>3/15/18</td>
<td>Add battery backup for corridor Emergency egress lighting</td>
<td>Security Upgrade</td>
<td>Add battery backup to existing fluorescent lighting fixtures in the corridor to provide code required emergency egress path lighting</td>
<td>$20,000 ($400/fixture)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>MS-0049</td>
<td>3/8/18</td>
<td>Water Piping Replacement</td>
<td>Replacement</td>
<td>Replace remaining worn domestic water piping (copper, galvanized, PEX) with new copper tubing or Schedule 80 CPVC.</td>
<td>$60,000</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
FACILITIES CONDITION ASSESSMENT

Facility: Eagle Bluff Elementary

Building Age: 1999 Original Construction

BUILDING DATA

<table>
<thead>
<tr>
<th>Building Area</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>First Floor</td>
<td>68,240 SF</td>
</tr>
<tr>
<td>Second Floor</td>
<td>50,567 SF</td>
</tr>
<tr>
<td>Total</td>
<td>118,807 SF</td>
</tr>
</tbody>
</table>

- Building Occupancy Classification: Educational Group E
- Construction Type: Type II-B
- Fire Protection: Non-sprinklered
CONDITIONS ASSESSMENT

1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

The exterior walls were constructed of masonry bearing walls comprised of utility size face brick over concrete block. The exterior masonry walls were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and a 8” concrete block backer. Window openings were constructed with precast colored concrete sills.

Observations:
The exterior face brick remains in very good condition with limited areas that should be cleaned of stains. Brick wall surfaces near the main entrance shows small areas of efflorescence that should be removed. Caulked exterior brick expansion joints are also with few exceptions in good condition. The colored precasts concrete sills have faded from exposure to UV.

Recommendations:
Remove and clean brick surfaces where efflorescence occurs or where splattered dirt has collected on brick wall surfaces (limited locations).

The colored precast concrete sills have weathered and faded from exposure to UV and options for either re-sealing of covering with prefinished metal flashing may be considered for sometime in the near future.

1.2 WINDOWS

Windows include a combination of heavy-duty aluminum projected type operable windows and fixed glass aluminum storefront framed glazing. All glazing is 1” insulated glass.

Observations:
In general, all windows appear to be in good condition showing only slight aging of the aluminum frame finish.

1.3 HOLLOW METAL DOORS & FRAMES

Observations
Hollow metal doors and frames are also showing minimal signs of aging and general deterioration. Future maintenance related projects should be considered to include refinishing (painting) of the exterior hollow metal doors, frames, and any steel lintels above the doors.

1.4 ROOFING

Roof Structure: Roof framing was comprised of steel bar joists with steel decking.

Roofing: The roof system is comprised of a combination ballasted single-ply rubber roofing and standing seam metal roofing. The single-ply membrane roofing was specified with a 10-year warranty, which would have expired in 2009.
Observations
Based on discussions with Bechtel Roofing, the ballasted single-ply membrane roofing in
remains in satisfactory condition with an indefinite remaining life-span.
Repair front flashing damaged by ice or wind.

Recommendations
Standard roof maintenance should include annual inspection of perimeter and curb flashings.

2.0 BUILDING INTERIOR

2.1 FLOORING

Flooring materials include a combination of terrazzo (corridors), carpet, resilient flooring,
ceramic tile and quarry tile.

Observations
Seasonal movement of plumbing clean-outs in some of the corridors.

Recommendations
Monitor movement of plumbing clean-outs.

2.2 CEILINGS

Ceilings are primarily suspended acoustical tile. The main entrance corridor is of a suspended linear wood.

Observations
With the exception of the suspended ceiling in the kitchen area, all suspended ceilings appear in good condition.

Recommendations
Monitor ceiling T-grid in kitchen areas for any sign of corrosion.

2.3 INTERIOR WOOD DOORS

Interior wood doors consist of White Birch veneer flush solid core doors. Doors at fire
erated openings are presently glazed with wire glass.

Observations
The wood doors appear to be in good condition with few signs of damage to the wood veneer.

Recommendations
Remove and replace all wire glass lites in doors or sidelites with fire rated safety glass required by Code.

2.4 CABINETS

Plastic laminate cabinets appears to generally be in good conditions.
3.0 HANDICAP ACCESSIBILITY

The 2013 Study looked at the entire building to summarize deficiencies with regard to handicap accessibility per current ADA and State of Wisconsin guidelines.

3.1 ACCESSIBLE ROUTES

No additional work is required.

3.2 ACCESSIBLE PARKING

No work required.

3.3 ACCESSIBLE ENTRANCE

Existing Condition
The main entrance on the south side currently has an automatic door opener device attached to the entrance door on the east end of the entrance. Push plates have been installed on the adjacent wall surfaces on the interior and exterior sides.

3.4 ACCESSIBLE INTERIOR CIRCULATION

Existing Conditions
All areas are accessible.

Recommendations
No work required.

3.5 ACCESSIBLE TOILET ROOMS

Recommended Action
No work required.

3.6 SIGNAGE

Recommended Action
No work required.
null
Eagle Bluff Elementary school is a relatively new facility and as expected site infrastructure is in generally good condition. Most of the pavement should remain serviceable for the foreseeable future with the exception of an area in I-4 that appears to have suffered some settlement damage. The sidewalks are generally in good condition except for some isolated areas of broken or vertical misaligned sections which should be corrected. Areas of significant misalignment have been identified in the Assessment. Some areas of curb have suffered plow damage but this is cosmetic. As is noted for the other district buildings, ADA parking is missing the required signage and is not located on the shortest accessible route to the building as required by Code. The number of stalls appears to be less than what is required. Drainage from the north play field could be improved by the addition of several area drains in the lawn to eliminate the ponding that occurs in the southwest corner.
The following report is the result of a site visit by Bob Novak, Tailored Engineering, that occurred March 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations

1. Water heating equipment consists of two gas-fired instantaneous water heaters. The heaters appear to be in very good condition, (replaced in Spring of 2018). The water heaters appear to be appropriately sized for the facility.

2. A Duplex domestic water booster pump has been provided to maintain adequate water pressure within the building. Outlet water pressure on the system is set at 80 psi. This is a NON-VFD system with mechanical pressure reducing valves, it has recently be repaired, it has some leaks in the piping fittings. Motors are 3HP each.

3. The building is served by a Duplex Hellenbrand water softener. The HW & CW is softened.

B. Recommendations

1. Provide maintenance on water heaters as required.

2. Provide required maintenance on the existing equipment as required

C. Expected Remaining Lifespan

1. Plumbing equipment should have a life span of 5 years on the water heating equipment.

2. Water Booster system will require on going issues/repairs, replacement with a VFD controlled system should be considered, there will be substantial energy savings and water pressure will be better controlled.
Plumbing Fixtures

A. Observations

1. Plumbing fixtures located within the toilet rooms and classrooms are generally in good condition.
2. Toilet rooms in this facility are ADA compliant.
3. The owner indicated that the flush valves on the water closets and urinals need repair on a regular basis. This could be directly related to the hard water on the cold water- (facility is fully softened 7/1/2017)
4. The kitchen equipment is in good condition.
5. Art room sinks are provided with plaster traps. Although messy, the sinks and faucets appear to be functioning well.

B. Recommendations

1. Flush valves should be scheduled for replacement.

C. Expected Remaining Lifespan

1. Plumbing fixtures should have a life expectancy of 25 years.

Sanitary Piping
Eagle Bluff Elementary School
Onalaska, Wisconsin

A. Observations
1. The existing piping system is primarily schedule 40 PVC piping. The owner expressed no concerns with the sanitary piping system.
2. An exterior grease interceptor has been provided for the kitchen. The interceptor is part of the new addition and has been adequately sized for the building demand and is regularly maintained.
3. The plaster traps for the arts room appear to be in good condition and are regularly maintained.

B. Recommendations
1. Continually maintain the existing grease interceptor.
2. Continually maintain the plaster traps.

C. Expected Remaining Lifespan
1. Sanitary piping should have a life expectancy of 40 years.

Storm Piping

A. Observations
1. The storm piping for this building is schedule 40 PVC piping. The piping is in good condition.
2. The school district indicated that the storm sewer is working well.

B. Recommendations
1. Continue to monitor the storm piping system.

C. Expected Remaining Lifespan
1. Storm piping should have a life expectancy of 40 years.

Domestic Water Piping

A. Observations
1. The building is served by a 3" water service and meter. The existing service appears to be adequately sized for the building. The building is also provided with a separate water meter for irrigation purposes.
2. There is a 2" RPBP for the irrigation water.
3. The existing building does not have a fire protection system. We were unable to determine the exact service size of the piping that enters the building. Based on this photo, it appears that a 6” combination service was installed. Should this be the case, a sprinkler system could be installed within the building.

4. All domestic water piping is Type "L" copper tubing and is in very good condition.

B. Recommendations

1. Continually monitor and maintain the piping system and related equipment as required.

D. Expected Remaining Lifespan

2. Water piping should have a life expectancy of 30 years depending on the water quality.
The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on August 2, 2013 with a follow up visit to update the building status on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. The building heating system is a hot water system that consists of two (2) Hurst 80 hp firebox boilers rated at 2,678,000 btu output each. The pumping system is a primary-only arrangement with variable flow system pumps.

2. The building cooling system is a central chilled water system that consists of a 300 ton Multi-Stack water-cooled modular chiller. The chiller condenser is cooled with an outdoor closed-circuit fluid cooler with variable speed fans. The pumping system is a primary-secondary arrangement with a variable flow system pump.

3. The building is served by constant volume air handling units and air handling units with hot water VAV control. The air handling units have been updated in recent years with pre-heat coils and coil pumps.

4. The building is controlled by a Schneider Electric/T.A.C. direct digital control system. Several Barber-Colman digital controllers that were original from 1999 were replaced with Schneider Electric controllers in 2014.

B. Observations

1. The hot water heating system is in good condition and, with a proper maintenance program, should continue to serve the building for another 15-20 years.

2. The chilled water system is in good condition and, with a proper maintenance program, should continue to serve the building for another 15-20 years.

3. Hot water convectors and cabinet heaters are controlled by standalone electric thermostats that are not connected to the central digital control system.
C. Recommendations

1. Continue with the current preventative maintenance plan on all mechanical equipment.

2. Continue to maintain the existing Schneider Electric digital control system. We recommend maintaining the software with the latest updates to keep the system current.
Electrical System Review (Updated 3/08/2018)
The following report is the result of a site visit by Muermann Engineering, LLC that occurred on August 2, 2013 and by Galileo Consulting Group LLC on March 8, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The building was originally constructed in 1999.

Main Electrical Service

Existing Data

A. This school has a 1,600 amp 480Y/277 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service switchboard consists of a 1,600 amp main circuit breaker section and two circuit breaker distribution sections for the branch feeders. This service equipment was installed in 1999. The switchboard is a Cutler Hammer. There are 14 spaces available for future circuit breakers. There is an integral surge protection device.

Observations
A. The main service switchboard is in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the main service switchboard is about 30-35 more years.

Recommendations

A. None.

Panelboards

Existing Data

A. The panelboards are Cutler Hammer and were installed in 1999.

Observations

A. The panelboards generally are not full and have space for additional circuit breakers.
B. The panelboards are in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the panelboards is about 30-35 more years.

Recommendations

A. None.
Generator

Existing Data

A. This building has a 20 KW Cummins natural gas fueled generator. The generator is liquid cooled. It was installed in 1999. The generator is located outside of the electrical room in the dumpster enclosure.

B. There is one 70 amp Cummins automatic transfer switch located in the main electrical room. This transfer switch is used for life safety loads only.

Observations

C. The generator and transfer switch are in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the generator and automatic transfer switch is about 15-20 more years.

Recommendations

A. None.

Lighting Fixtures and Controls

Existing Data

A. The classrooms have 2x4 acrylic lens 3 or 4-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two sets of switches that control two separate banks of inboard/outboard lamps in each fixture. The light fixtures are on 8’ X 8’ centers.

B. The corridors have 2x4 acrylic lens and parabolic 2-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are 24/7 night light fixtures. The fixtures are spaced 12’ on center.

C. The offices have 2x4 parabolic 3-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each office also has an occupancy sensor and two switches that control dual level inboard/outboard lamps in each fixture.

D. The gym has fluorescent T5HO high bay fixtures with occupancy sensors.

E. Exterior canopy fixtures, perimeter wall-packs and Parking lot pole lights are LED type. The parking lot and canopy lighting are controlled by a photocell-on, photocell-off central lighting contactor in the exterior lighting control panel. The wall pack lighting is controlled by a photocell-
on, timeclock-off central lighting contactor in the exterior lighting control panel. The exterior lighting control panel is located in the main electrical room.

Observations
A. The staff indicated the existing interior and exterior light fixtures are in good working order and the light levels are good also.

Expected Remaining Lifespan
A. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

Recommendations
A. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $200 for each fixture.
B. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $356,421
C. For Specialized Instruction areas such as; Special Education, Childrens Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.00/sq.ft.

Wiring Devices
Existing Data
A. The receptacles and toggle switches are commercial grade 15A with unbreakable nylon plates.

Observations
A. The receptacles and toggle switches are in good working order.

Expected Remaining Lifespan
A. The expected remaining lifespan of the wiring devices is about 20-25 more years.

Recommendations
A. None.
Fire Alarm System

Existing Data

A. The fire alarm control panel is an EST3 addressable system. The fire alarm panel is located in the main electrical room.
B. There are pull stations by all exterior doors.
C. There are wall mounted horn strobe devices in the corridors and classrooms.
D. There are smoke detectors in corridors, classrooms, and storage rooms. There are heat detectors in mechanical rooms.
E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
F. All fire alarm cabling is installed “open air” above the ceilings.

Observations

A. The fire alarm system smoke detectors, heat detectors, horn/strobe notification devices, manual pull stations, duct detectors, etc. are original installation in 1999 and approaching the end of their useful life.
B. Fire alarm system is compliant with current fire alarm codes.

Expected Remaining Lifespan

A. The expected remaining lifespan of the fire alarm system is about 10-15 more years for the Fire Alarm Control Panel, but will still require periodic upgrades to hardware and software. The Notification devices have 0-5 yrs of useful life.

Recommendations

A. Consider upgrading to an audio evacuation fire alarm system:
 1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
 2. This building is not sprinklered.
 3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
 4. Budget estimate to upgrade to audio evacuation system installation - $85,000.
Clock System

Existing Data
A. There is a Lathem hard-wired synchronized clock system. This system is 19 years old. The clock master controller is located in the second floor data room.
B. There are Lathem analog clocks in the classrooms, offices, and other public areas.
C. The bell tone is controlled by the master clock controller.

Observations
A. The clock system is in good working order but due to age is approaching the end of its useful life.
B. Additional clocks can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the clock system is about 5-10 more years.

Recommendations
A. Replace the entire master clock system with new low voltage hard-wired Point-Over-Ether (POE) system or with line-voltage AC powered synchronized wireless system.
B. Budget $20,000.
Intercom System

Existing Data

A. There is a Telecor intercom system. This system is 19 years old. The amplifier is located in the second floor data room.
B. The intercom system is accessed through the phone system.
C. There are recessed ceiling mounted intercom speakers in the corridors and classrooms.
D. There are flush wall mounted horns on the exterior of the building.
E. The bell system is toned through the intercom speakers.

Observations

A. The intercom system is in good working order but is reaching the end of its expected life.
B. Additional intercom speakers can be added.

Expected Remaining Lifespan

A. The expected remaining lifespan of the intercom system is about 5 - 10 more years.

Recommendations

A. Replace with a new modernized system. Consider a system to integrate with modern technology such as mobile communication, pre-recorded messaging, etc. Budget allowance of $45,000.
Phone System

Existing Data
A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.
B. The phone cabling is CAT5 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in both second floor data rooms.

Observations
A. The phone system is in good working order.
B. Additional phones can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the Mitel 3300 phone system is about 10 more years.

Recommendations
A. Replace existing CAT5e cable and jacks to CAT6.

Data System

Existing Data
A. The MDF data rack is located in the second floor data room. There is one floor mounted data rack. There is one additional IDF data rack in the other second floor data room.

B. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

C. The data cable is CAT5e plenum rated which is routed to patch panels in the data rack.

D. The patch panels in the data rack are CAT5e Hubbell.

E. There is a UPS.

Observations

A. The data system is in good working order.

B. Additional horizontal runs of data cable can be added to the existing rack.

C. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today's needs and for anticipated near future.

Expected Remaining Lifespan

A. The expected remaining lifespan of the CAT5e data cable is about 7-10 more years.

B. The expected remaining lifespan of the network equipment is about 7-10 more years.

Recommendations

A. Replace the old existing CAT5e cable with new CAT6 cable. $150/data jack for a total of $80,000.
Observations
A. There is a CATV service to this building. The CATV distribution rack is located in the IMC work room. There is a CATV jack in each classroom.

Observations
A. CATV system is no longer in use.

Expected Remaining Lifespan
A. Not applicable.

Recommendations
A. Remove all CATV equipment and jacks.
B. Remove all CATV Coax cable. Budget $5,000.
Security System

Existing Data
A. There is an Ademco security system. The security control panel is located in the main electrical room. This system is 19 years old.
B. The security system has motion sensors in the corridors.

Observations
A. There are no exterior door contact switches.
B. Security system is in good working order.
C. Additional security devices can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 10-15 more years.

Recommendations
A. Add exterior door contact switches. $400 Ea. X 30 doors = $12,000.

CCTV System

Existing Data
A. There is a server based IP CCTV system used throughout all the buildings in the district.
B. There are interior and exterior fixed color IP cameras.

Observations
A. The CCTV system is in good working order.
B. Additional cameras can be added.
Expected Remaining Lifespan

A. The expected remaining lifespan of the CCTV system is about 7 more years.

Recommendations

A. None

Access Control System

Existing Data

B. There is an RS2 System door access control system which was installed for the District in 2013 - 2014.

C. There are multiple doors with an electric strike and key fob reader.

Observations

A. The access control system is in good working order.

B. Additional doors can be added to this system.

Expected Remaining Lifespan

A. The expected remaining lifespan of the access control system is about 10-15 more years.

Recommendations

A. Install electric strikes with key fob readers on additional exterior and interior doors. $3,000/door x 7 doors = $21,000.
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>EB-0001</td>
<td>10/10/13</td>
<td>Resilient flooring replacement</td>
<td>Maintenance</td>
<td>Remove existing paint damaged VCT flooring with new spray-applied epoxy seamless flooring.</td>
<td>$25,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0002</td>
<td>10/10/13</td>
<td>Re-flash rubber membrane flashing at perimeter.</td>
<td>Maintenance</td>
<td>Re-flash rubber membrane at roof perimeter.</td>
<td>$12,000</td>
<td>Annual</td>
<td>2</td>
</tr>
<tr>
<td>EB-0003</td>
<td>10/10/13</td>
<td>Door Glass Replacement</td>
<td>Code Compliance</td>
<td>Remove all existing wireglass installed in fire labeled doors and sidelites with new fire-protection rated safety glass.</td>
<td>$29,325</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0004</td>
<td>10/10/13</td>
<td>Ceiling Grid Replacement in Kitchen area.</td>
<td>Maintenance</td>
<td>Replace corroded suspended ceiling system grid with aluminum based T-grid.</td>
<td>$10,005</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0005</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-0006</td>
<td>10/10/13</td>
<td>Art Room Faucet Replacement</td>
<td>Replacement</td>
<td>Existing faucets in the Art Rooms appear to show significant wear and should be replaced in the near future.</td>
<td>$4,830</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0007</td>
<td>Remove from list</td>
<td>Upgrade temperature controls</td>
<td>Systems Upgrade</td>
<td>Replace the old Barber-Coleman components with latest update Schneider Electronic digital control system.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-0008</td>
<td>10/10/13</td>
<td>Door contact switches</td>
<td>Security Upgrade</td>
<td>Add exterior door security contact switches</td>
<td>$12,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0009</td>
<td>11/8/13</td>
<td>Upgrade Temperature Controls</td>
<td>Systems Upgrade</td>
<td>Replace obsolete Temperature Controls</td>
<td>$22,500</td>
<td>6/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0010</td>
<td>11/15/13</td>
<td>Kindergarten Playground Equip.</td>
<td>Safety</td>
<td>Replace kindergarten playground equipment with apparatus rated for 2-5 year olds. Volunteer install cost.</td>
<td>$47,000</td>
<td>10/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0011</td>
<td>3/4/14</td>
<td>Sidewalk Replacement</td>
<td>Safety</td>
<td>Continuation of sidewalk replacement and sub base redo by front entrance – annual inspection.</td>
<td>$5,620</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EB-0012</td>
<td>4/24/14</td>
<td>Surveillance Cameras</td>
<td>Safety</td>
<td>Add 3 inside and 2 outside cameras</td>
<td>$4,421</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>-----------------</td>
<td>--</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>EB-0013</td>
<td>3/12/15</td>
<td>Water fountains</td>
<td>Operational</td>
<td>Add water fountains in both music classrooms, only area in school that the fountains were not installed.</td>
<td>$5,000</td>
<td>8/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0014</td>
<td>3/12/15</td>
<td>LMC Fixture replacement</td>
<td>Energy Efficiency</td>
<td>Replace the 1000w MH with LED fixtures</td>
<td>$41,330</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0015</td>
<td>3/12/15</td>
<td>Landscape</td>
<td>Safety / Operations</td>
<td>Landscape outside the art room doors to minimize water flow and ice buildup.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0016</td>
<td>4/14/16</td>
<td>Playground Repair</td>
<td>Safety/Operations</td>
<td>Replace all parts where the coating is missing on the mid-level playground</td>
<td>$26,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0017</td>
<td>6/7/16</td>
<td>Add Condensing Boiler</td>
<td>Energy</td>
<td>Install condensing boiler</td>
<td>$110,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0018</td>
<td>6/24/16</td>
<td>Replace exterior lighting</td>
<td>Energy</td>
<td>Replace all existing lighting fixtures with LED</td>
<td>$25,000</td>
<td>1/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0019</td>
<td>6/24/16</td>
<td>Heating Issues</td>
<td>Energy</td>
<td>Implement solution for air infiltration in art rooms</td>
<td>$25,000</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0021</td>
<td>3/22/17</td>
<td>Water conditioning</td>
<td>Maintenance</td>
<td>Install new water conditioning system to treat all domestic water systems due to water hardness issues.</td>
<td>$9,502</td>
<td>9/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>EB-0022</td>
<td>OPEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EB-0023</td>
<td>3/06/18</td>
<td>Replace CW booster pumps</td>
<td>Maintenance</td>
<td>Replace with VFD controlled duplex system.</td>
<td>$40,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0024</td>
<td>3/26/2018</td>
<td>Upgrade Interior Lighting to LED, upgrade control system</td>
<td>Technology Upgrade</td>
<td>Replace existing interior fluorescent lighting with energy efficient LED. Replace existing lighting controls with new Networked digital programmable controls.</td>
<td>$356,421</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0025</td>
<td>3/26/2018</td>
<td>Data Cable Replacement</td>
<td>Technology Upgrade</td>
<td>Replace existing CAT5e data cable with new CAT6 data Cable</td>
<td>$80,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0026</td>
<td>3/26/2018</td>
<td>Upgrade existing fire alarm system to Voice-Evac</td>
<td>Systems Upgrade</td>
<td>Upgrade existing fire alarm system with new voice evac type which is the industry standard for schools. Replace all devices with new due to advanced age.</td>
<td>$85,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0027</td>
<td>3/26/2018</td>
<td>Upgrade Master Clock System</td>
<td>Systems Upgrade</td>
<td>Replace existing Master Clock System with new due to advanced age.</td>
<td>$20,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>EB-0028</td>
<td>3/26/2018</td>
<td>Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior doors.</td>
<td>$21,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>EB-0029</td>
<td>3/26/2018</td>
<td>Public Address Intercom System</td>
<td>System Upgrade</td>
<td>Replace existing Public Address Intercom system with new due to advanced age.</td>
<td>$45,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0030</td>
<td>3/26/2018</td>
<td>CATV System</td>
<td>Maintenance</td>
<td>Delete all CATV system wiring, equipment and jacks, system no longer in use.</td>
<td>$5,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>EB-0031</td>
<td>3/8/18</td>
<td>Drainage, J3</td>
<td>Maintenance</td>
<td>Add drain inlets to eliminate mud hole.</td>
<td>$2500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>EB-0032</td>
<td>3/8/18</td>
<td>Retaining wall blocks, I2</td>
<td>Safety</td>
<td>Reinstall block units</td>
<td>$1000</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
FACILITIES CONDITION ASSESSMENT

Facility: Pertzsch Elementary School
524 Main Street
Onalaska, WI 54650

Building Age:

- 1950 Original Construction
- 1955 West Wing Additions
- 1966 Additions & Remodeling
- 2005 Bus/Parent Drop-Off Driveway
- 2006 Additions & Remodeling
- 2009 Community Room Enhancements
- 2014 Gymnasium Addition & Classroom Remodeling

Building Data:

- Construction Type: Type 3B – Exterior Masonry
- Building Area: 90,500 GSF
- Fire Protection: Partially sprinklered

Site

- Parking: 40 stalls
2.0 CONDITIONS ASSESSMENT

Building Envelope

Exterior Walls
The exterior walls of the original building were constructed of masonry bearing walls comprised of modular face brick over concrete block without any rigid cavity or surface applied insulation. The exterior masonry walls of the 2006 and 2014 – 15 additions were constructed as a multi-wythe, 14” thick cavity wall with modular face brick, 2” cavity insulation and a 8” concrete block backer.

Observations:
- The exterior face brick of on the 2006 addition and 1966 south wing/ gymnasium remains in good condition. Brick mortar joints at the 1966 addition show minimal signs of any significant deterioration. Expansion joint sealants are in good condition. Some may require replacement as part of any annual maintenance program.
- Aluminum windows and entrances are in satisfactory condition.

Roofing

1950 Original Building & 1955 West Wing Addition
The roof structure of the original 1950 building and 1955 west wing addition consisted of wood roof joists and decking, which was left in place as part of the 2006 additions and remodeling project. The 1966 classroom/gymnasium addition was framed with steel joists and decking.

The 1950 and 1955 wings were roofed with a ballasted single-ply rubber membrane. The 2006 project surrounded the 1950 and 1955 wings with a 60-mil ballasted single-ply roofing over rigid insulation in combination with standing seam metal roofing applied to the raised roofs above the library and east side entrances.

The 1966 classroom / gymnasium wing is roofed with a urethane foam. The foam roof above the gymnasium was re-coated in 2012.

The 2014 gymnasium addition was roofed with a fully-adhered single-ply rubber membrane over rigid insulation.

Observations of Existing Roofs
In general, the ballasted roof areas appear to be in satisfactory condition. Perimeter of the rubber membrane roofs will likely continue pulling away from any parapet or raised roof curbs from ongoing shrinkage.

The foam roofs above the 1966 classroom/gymnasium wing will continue to require frequent inspections for holes thru the foam that will contribute to leakage into the interior. The foamed roof surface is irregular and allows water to pond before finding its way to the roof drains and scuppers. Damage from birds are often the source of creating holes in the foam which can expand over time.
Sheet metal fascia, gutters and downspouts appear in satisfactory condition. The original fascia at the 1966 south end addition appears worn and deteriorating. The open face downspouts on the east wall of the gymnasium are functional.

Recommendations:
For purposes of extending the lifespan of the ballasted single ply rubbed membrane roof, it is recommended that the perimeters be cut out and re-flashed with reinforced perimeter strip. Membrane seams should also be re-stripped on a scheduled annual basis. The maintenance work should extend the life of the ballasted roofing indefinitely.

The urethane foam roofs can continue to be re-coated and repaired indefinitely with the understanding that frequent inspections and repairs will likely be necessary. Total tear-off and replacement with a single-ply membrane (EPDM or PVC) remains an option when conditions justify the cost of maintaining versus total replacement.

Building Interior

Recommendations

Wall Protection: Additional wall protection to drywall surfaces, primarily in high-abuse areas such as main corridors and stairwells, could be applied using PVC sheet membrane as supplement to the vinyl cornerguards already in place.

3.0 HANDICAP ACCESSIBILITY

In general, all occupied areas of the Irving Pertzsch Elementary School were brought into compliance with the ADA guidelines for handicap accessibility as part of the 2006 building project.

All portions of the 2014 gymnasium addition were also designed for compliance with the ADA guidelines.
3.1 ACCESSIBLE ROUTE

Existing Conditions
The Wisconsin Commercial Building Code defines an “accessible route” as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site amenities such as staff parking lots and bus loop driveways. The Irving Pertzsch Elementary site currently provides accessible routes from 1) the south side bus drop-off area, 2) main building entrance on the east end, and 3) all entrances from the playground side, and 4) Entrance B off from Main Street (day care, Community Room).

Recommended Action: No additional work is required.

3.2 ACCESSIBLE PARKING

Where parking is provided, accessible parking spaces shall be provided as follows:

<table>
<thead>
<tr>
<th>Total Parking Spaces Provided</th>
<th>Required Number Of Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 25</td>
<td>1</td>
</tr>
<tr>
<td>26 to 50</td>
<td>2</td>
</tr>
<tr>
<td>51 to 75</td>
<td>3</td>
</tr>
</tbody>
</table>

The existing east side parking lot includes a total of 40 spaces. There are currently two spaces designated handicap parking stalls.

3.3 ACCESSIBLE ENTRANCE

Existing Condition
Door operators have been provided at Entrance A, Entrance B, and Pupil Services on the east end.

3.4 ACCESSIBLE INTERIOR CIRCULATION

Both levels are connected by elevator located near the entrance to the LMC. All classrooms, corridors and auxiliary spaces were designed for compliance with ADA guidelines for interior circulation.

3.5 ACCESSIBLE TOILET FACILITIES

2006 Additions & Remodeling: All new toilet rooms as part of the 2006 project were designed in compliance with the ADA guidelines.

2014 Gymnasium Additions & Classroom Remodeling: All new toilet rooms as part of the 2006 and 2014 projects were designed in compliance with the ADA guidelines.

3.6 SIGNAGE

Existing Conditions
ADA compliant signage was provided as part of the 2006 and 2014 building projects.
IRVING PERTZSCH ELEMENTARY

LOWER LEVEL OVERALL PLAN

IRVING PERTZSCH ELEMENTARY

Irving Pertzsch Elementary
524 Main Street
Onalaska, WI 54650
Irving Pertzsch Elementary School
Site Facility Assessment Comments

Irving Pertzsch School has constructed or reconstructed most of the associated site improvements with the recent building additions and remodeling. There are, however, some specific places that are identified in the Assessment that should be addressed in the near future due to code or safety concerns. Where ADA signing can be implemented to create current code compliant parking it is required to be done at the time of any reconstruction, sealcoat, or restripe operation. The main issue is the current signs are too short. Furthermore, neither of the current playscapes include provisions for accessibility. The areas appear to be new (south play area) or have had significant work done (east playground) where consideration for accessibility should have been included.

There are several areas where minor paving misalignments result in a tripping hazard. These are inexpensive and should be taken care of soon. In particular, the paving at the front entrance is misaligned in the area of the accessible route to the building. This results in about a 1.5” lip between the asphalt driveway and the entrance sidewalk. Based on the importance of this entrance this should be addressed immediately. Temporarily, the asphalt could be ground down to eliminate the lip. In the long term there should be a concrete apron placed in the area of the accessible route so that bar ties can installed to prevent the misalignment in the future.
Plumbing

The following report is the result of a site visit by Bob Novak, Tailored Engineering, that occurred on March 2018. Site observations and interviews with staff were used in the preparation of this report.

Plumbing Equipment

A. Observations

1. Water heating equipment consists of two gas-fired instantaneous water heaters. The heaters appear to be in good condition. (New in 2016)
2. The Holby mixing valve is set at 130 degrees for the public and classroom water temps. The valve should be set to a maximum outlet temp of 115 degrees.
3. The building is served by a Simplex Hellenbrand water softener. The water softener appears to be softening only the hot water. Water hardness levels in this part of the state typically require both the hot and cold water to be softened.

B. Recommendations

1. Provide maintenance on water heaters as required.
2. Repair or reset existing Holby valve.
3. Existing water softener may be capable of providing soft water for the entire domestic water demand. This would allow the district to eliminate the water softener located in the kitchen. Additional investigation would be required.

C. Expected Remaining Lifespan

1. The expected remaining lifespan of the water heaters is 10 years
2. The expected remaining life cycle of the water softener is 20 years.
Plumbing Fixtures

A. Observations
1. Plumbing fixtures located within the toilet rooms and classrooms are generally in very good condition.
2. All classrooms are provided with sinks.
3. The kitchen equipment is in good condition.
4. Plumbing fixtures in the oldest part of the building were replaced in the 2016 remodeling

B. Recommendations
NONE

C. Expected Remaining Lifespan
1. The expected remaining lifespan of the new plumbing fixtures is 20-25 years.

Sanitary Piping

A. Observations
1. Sanitary piping in the original building is cast iron. Sanitary piping in the addition is schedule 40 PVC piping. The owner did not indicate problems with the existing sanitary piping system.
2. An exterior grease interceptor has been provided for the kitchen. The interceptor is part of the new
Irving Pertzsch Elementary School
Onalaska, Wisconsin

addition and has been adequately sized for the building demand.

B. Recommendations
1. Continually maintain the existing grease interceptor.

C. Expected Remaining Lifespan
1. Original building sewer has a remaining life expectancy of 20-25 years

Storm Piping

A. Observations
1. The majority of the existing storm piping drainage discharges directly to grade.
2. Piping materials appear to be holding up well

B. Recommendations
1. Continue to monitor the storm piping system.

Domestic Water Piping

A. Observations
1. The building is served by a 2" water service and meter. The existing service appears to be adequately sized for the building. The building is also provided with a separate water meter for irrigation purposes.
2. The new addition is provided with a 6" water service which is designated for the fire protection system only. Only the new addition is provided with fire protection.
3. The Server room is provided with a pre-action sprinkler system.
4. All new domestic water piping is Type "L" copper tubing and is in very good condition.

B. Recommendations

1. The pre-action sprinkler system must be tested per NFPA and state and local fire codes.
The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on August 2, 2013 with a follow-up to update the building status on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. The building heating system is a hot water system that consists of three (2) Thermal Solutions sealed combustion boilers rated at 1,320,000 btu output each. The pumping system is a primary-secondary arrangement with variable flow system pumps. Each boiler is served by an inline primary pump while main and stand-by pumps are piped in parallel in the secondary loop.

2. The building cooling system is a central chilled water system that consists of a 100 ton indoor water-cooled Multi-Stack chiller that is cooled by city water. It is piped in series with a 50 ton indoor Multi-Stack heat recovery chiller. The heat recovery chiller provides cooling during light load and spring/fall conditions while the condenser water loop is connected to the hot water system piping to provide warm water for reheat and areas requiring lighter amounts of heat. If the condenser water heat cannot be rejected to the hot water system, a modulating 3-way valve directs the water to an outdoor fluid cooler. The pumping system is a primary-secondary arrangement with variable flow system pumps. The heat recovery chiller is served by constant flow pumps on both the evaporator and condenser sides of the unit.

3. The building is served by a mixture of constant volume air handling units with booster coil reheat, fan coil units, and unit ventilators. Two (2) roof-mounted energy recovery units with energy recovery wheels provide fresh air to the 2006 classroom wing. These units were installed in 2014 to replace the original unit from 2006 that was undersized.

4. While the majority of the HVAC equipment was installed new in 2006, some original equipment remains including some of the unit ventilators. Two (2) new air handling units were installed in 2015 to serve the new gymnasium and classroom area in the building addition. These units incorporate single-zone VAV control (Gymnasium) and traditional VAV control (Classrooms) along with demand control ventilation utilizing carbon dioxide sensors to modulate the amount of fresh outdoor air required to each system based on actual load conditions.

5. The majority of the building was controlled by a Trane direct digital control system but was updated in 2017 to all Schneider Electric digital control system for the entire facility.

B. Observations

1. 1 (1) boiler is in good condition and, with a proper maintenance program, should continue to serve the building for another 8-12 years. The second boiler has reportedly been experiencing multiple problems and is scheduled for replacement in the near future.
2. The indoor water-cooled chiller was installed new in 2015 and is in excellent condition. The heat recovery chiller was installed in 2006 and is in good condition. These chillers operate on R410a refrigerant which is considered a current and environmentally-friendly product.

3. The air handling equipment installed in 2006 has been well maintained and is in good condition. The 2015 air handling units are in excellent condition.

4. The unit ventilators that were installed as part of the original building construction are in fair condition but are near the end of their expected service life.

5. The Owner has expressed several concerns regarding heating and control of the older building construction, zone control, and humidity.

6. The majority of the corridors are unconditioned. The Owner has commented that they are often stuffy and humid. A couple of the corridors were addressed in the 2015 building project by serving them from the new air handling system.

7. The library and adjacent computer lab were served as a single zone with the room temperature sensor located within the computer lab. The sensor location results in frequent overcooling of the library. 2017 - Added reheat to the LMC to correct the original issues.

C. Recommendations

1. The hot water and chilled water systems serving the building are overall in good operating condition. However, the third boiler that has been experiencing constant operational issues should be replaced in the near future.

2. Remove the existing booster coil reheat systems and replace with hot water VAV systems to improve energy efficiency and zone control.

3. Remove and upgrade the systems currently serving the original building construction to improve capacities and humidity control.
Electrical System Review (Updated 3/26/2018):

The following report is the result of a site visit by Muermann Engineering, LLC that occurred on August 2, 2013 and Galileo Consulting Group on March 8th, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The building was originally constructed in 1960. Additions and remodeling were done in 2006.

Main Electrical Service

Existing Data

A. This school has a 2,000 amp 208Y/120 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is mounted to a free standing structure near the utility transformer. The meter socket is mounted next to the CT cabinet on the free standing structure. The main service switchboard consists of a 2,000 amp main circuit breaker section and a circuit breaker distribution section for the branch feeders. This service equipment was installed in 2006. The switchboard is a General Electric. There are 14 spare circuit breaker spaces in the switchboard.

Observations

A. The main service switchboard has an integral surge protection device.

Expected Remaining Lifespan

A. The expected remaining lifespan of the main service switchboard is about 40-45 more years.

Recommendations

A. None.
Existing Data

A. The panelboards are General Electric.
B. A majority of the panelboards were installed in 2006. There are a few panelboards from 1960 that are still in use.

Observations

A. The panelboards are generally not full and do have space for additional circuit breakers.
B. The panelboards that were installed in 1960 are at the end of their useful life due to the operating lifespan of circuit breakers.
C. The panelboards that were installed in 2006 are in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the 1960 panelboards is 0-5 more years.
B. The expected remaining lifespan of the 2006 panelboards is about 25 - 30 more years.

Recommendations

A. Replace the 1960 panelboards and feeder with new. New circuit breakers will allow for a safer and more expandable installation. $7,000 EA for a Total of $42,000.
Irving Pertzsch Elementary School
Onalaska, WI

Generator

Existing Data

A. This building has a 100 KW Cummins natural gas fueled generator. The generator is liquid cooled. It was installed in 2006. The generator is located outside near the utility transformer. Relocated on 2015.

B. There is one Cummins automatic transfer switch for the life safety loads and one Cummins automatic transfer switch for the equipment loads.

Observations

A. The generator is in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the generator and automatic transfer switch is about 20 - 25 more years.

Recommendations

A. None.

Lighting Fixtures and Controls

Existing Data

A. The 2006 classrooms have 2x4 direct/indirect center basket 3-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. Each classroom also has an occupancy sensor and two sets of switches that control two banks of inboard/outboard lamps in each fixture. The light fixtures are on 8’ X 8’ centers.

B. The 1960 classrooms have surface wraparound 4-lamp fixtures. The lamps are T8 with a color temperature of 5000K. Each classroom has two switches that control the inboard/outboard lamps in each fixture.

C. The corridors have 2x4 acrylic lens 2-lamp fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The fixtures are controlled by a 3-way switch at each end of the corridor. There are occupancy sensors. There are 24/7 night light fixtures. The fixtures are spaced 12’ on center.

D. Exterior canopy, perimeter wall packs and parking lot fixtures are LED. The exterior lighting is controlled from a photocell-on, timeclock-off central lighting contactor which controls all fixtures at the same time.

Observations

A. There are no occupancy sensors in the 1960 classrooms.

Expected Remaining Lifespan
A. The expected remaining lifespan of the interior light fixtures in the 2006 classrooms is about 10 -15 more years.

B. The expected remaining lifespan of the interior light fixtures in the 1960 classrooms is about 5 more years.

Recommendations

A. Replace existing fluorescent lighting fixtures with LED upon failure or during future remodel projects. $200/fixture.

B. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $247,530

C. For Specialized Instruction areas such as; Special Education, Childrens Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.00/sq.ft.

Wiring Devices

Existing Data

A. The receptacles and toggle switches are commercial grade 20A with unbreakable nylon plates.

Observations

A. Switches and receptacles are in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the wiring devices is about 25 more years.

Recommendations

A. Replace any broken switches and receptacles. $30 EA

B. Add additional receptacles to classrooms as required. $200 EA for a Total $11,000.
Fire Alarm System

Existing Data

A. The fire alarm is an EST Quick Start addressable system. The system is 12 years old and has reached the end of its life expectancy, it was installed in 2006. The fire alarm control panel is located in the lower level mechanical room. The control panel is obsolete and replacement parts are no longer available.

B. There are pull stations by all exterior doors.

C. There are ceiling mounted horn strobe devices in the corridors and classrooms.

D. There are smoke detectors in the classrooms, corridors, and storage rooms. There are heat detectors in mechanical rooms.

E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.

F. All fire alarm cabling is installed “open air” above the ceiling.

Observations

A. The fire alarm system is in adequate working order, however it is approaching end of life in age and should be replaced as soon as possible.

Expected Remaining Lifespan

A. The expected remaining lifespan of the fire alarm system is about 0 - 5 more years.

Recommendations

B. Upgrading to an audio evacuation fire alarm system:
1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
2. This building is partially sprinklered.
3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary School has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
4. Budget estimate to upgrade to audio evacuation system installation - $105,000.

Clock System

Existing Data

A. There is a Lathem wireless synchronized clock system. This system is 12 years old and was installed in 2006. The clock master controller is located in the main IT room.
B. There are Lathem analog battery powered clocks in the classrooms, offices, and other public areas.
C. The bell tone is controlled by the master clock controller.

Observations

A. The clock system is obsolete and should be replaced.

Expected Remaining Lifespan

A. The expected remaining lifespan of the clock system is about 0 - 5 more years.

Recommendations

A. The existing system is obsolete and should be replaced. Budget $20,000.
Intercom System

Existing Data
A. There is a Telecor intercom system. This system is 12 years old and was installed in 2006. The amplifier is located in the main IT room.
B. The intercom is accessed through the phone system.
C. There are recessed ceiling mounted intercom speakers in the classrooms and corridors. There are horns on the exterior near all doors.
D. The bell system is toned through the intercom speakers.

Observations
A. The intercom system is in adequate working order.
B. Additional intercom speakers can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the intercom system is about 10-15 more years.

Recommendations
A. None.
Phone System

Existing Data

A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

B. The phone cabling is CAT3 and is routed back to wall mounted voice wiring blocks. The voice wiring blocks are located in the main IT room.

Observations

A. The phone system is in good working order.

B. Additional phones can be added to the system.

Expected Remaining Lifespan

A. The expected remaining lifespan of the Mitel 3300 PBX phone system is about 7 - 10 more years.

Recommendations

A. Remove all CAT 3 wiring and jacks and replace with new CAT 6. Budget $30,000.
Data System

Existing Data

A. The MDF data rack is located in main IT room. There are three floor mounted data racks. There is one additional IDF data rack located on the east side of the building.

B. The IDF data racks are connected to the MDF data rack with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

C. The data cable is CAT6 plenum rated which is routed to patch panels in the data rack.

D. The patch panels in the data rack are CAT6 Panduit.

E. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

F. There is a rack mounted UPS.

Observations

A. The data system is in good working order.

B. Additional horizontal runs of data cable can be added to the existing rack.

Expected Remaining Lifespan

A. The expected remaining lifespan of the CAT6 data cable is about 7-12 more years.

Recommendations

A. None
CATV System

Existing Data
A. There is a CATV service to this building. CATV splitters are located in the main IT room. CATV system is no longer in use.
B. There is a CATV jack in each classroom.
C. There is a ceiling mounted projector and/or wall mounted television in each classroom.
D. Some classrooms have smartboards.

Observations
A. CATV system is in working order.
B. Additional CATV jacks can be added.

Expected Remaining Lifespan
A. Not Applicable.

Recommendations
A. Remove all CATV equipment and jacks.
B. Remove all CATV Coax cable. Budget $5,000.

Security System

Existing Data
A. There is an Ademco security system. The security control panel is located in the main IT room. This system is 12 years old and was installed in 2006.
B. The security system has motion sensors in the corridors.

Observations
A. There are no exterior door contact switches.
B. Security system is in good working order.
C. Additional security devices can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 10 - 15 more years.
Recommendations

A. Add exterior door contact switches. $400 EA x 26 doors = $10,400.

CCTV System

Existing Data
A. There is a server based IP CCTV system used throughout all the buildings in the district.
B. There are interior and exterior fixed color IP cameras.
C. Current Network recorder has the capability of recording for 30 days.

Observations
A. The CCTV system is in good working order.
B. Additional cameras should be added for better security coverage.

Expected Remaining Lifespan
A. The expected remaining lifespan of the CCTV system is about 5 – 7 more years.

Recommendations
B. Provide additional interior and exterior IP Cameras. $1,000/camera for interior, $2,000/camera for exterior as needed.
Access Control System

Existing Data
A. There is an RS2 System door access control system installed for the District in 2015 - 2016.
B. There are multiple exterior doors with an electric strike and key fob reader.

Observations
A. The access control system is in good working order.
B. Additional doors can be added to this system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 15-20 more years.

Recommendations
A. Install electric strikes, key fob readers, etc on additional exterior and interior doors as needed for additional security and building use. Budget - $3,000/door x 4 doors = $12,000.
ONALASKA SCHOOL DISTRICT
FACILITY CONDITION ASSESSMENT
Updated: March 2018

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>IP-0001</td>
<td>10/10/13</td>
<td>Roofing Repair</td>
<td>Maintenance</td>
<td>Continuation of roofing repairs, part of PM program.</td>
<td>$13,500</td>
<td>Annual</td>
<td>1</td>
</tr>
<tr>
<td>IP-0002</td>
<td>10/10/13</td>
<td>Roofing Maintenance</td>
<td>Maintenance</td>
<td>Apply new seal coat over existing urethane roofing above 1966 wing.</td>
<td>$15,525</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0003</td>
<td>10/10/13</td>
<td>Wall Protection</td>
<td>Maintenance</td>
<td>Install new PVC wall protection wainscoting over drywall surfaces in corridors and stairwells.</td>
<td>$50,830</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0004</td>
<td>10/10/13</td>
<td>Vestibule Flooring Replacement</td>
<td>Maintenance</td>
<td>Replace walk-off carpet tile in vestibules.</td>
<td>$7,475</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0005</td>
<td>10/10/13</td>
<td>Classroom Cabinetry</td>
<td>Classroom Upgrade</td>
<td>Install top tier of wall cabinets above existing wall cabinets in classrooms.</td>
<td>$42,600</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0006</td>
<td>10/10/13</td>
<td>ADA Parking Site Grid Location G5</td>
<td>Code Compliance</td>
<td>-Relocate ADA Parking stalls to comply w/ 2% max slope.</td>
<td>$600</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0007</td>
<td>10/10/13</td>
<td>Entrance Drive Pavement Site Grid G4</td>
<td>Replacement</td>
<td>Replace first 6’ of driveway</td>
<td>$5,000</td>
<td>6/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0008</td>
<td>10/10/13</td>
<td>Sidewalk Replacement Site Grid Location B4</td>
<td>Replacement</td>
<td>Replace (5) broken squares of concrete (B4) Replace (1) broken squares of concrete (B2,C3)</td>
<td>$4,600</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0009</td>
<td>10/10/13</td>
<td>Water Heaters</td>
<td>Replacement</td>
<td>The District is replacing all sealed combustion storage type water heaters with new gas fired instantaneous heaters.</td>
<td>$4,000</td>
<td>10/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0010</td>
<td>10/10/13</td>
<td>Water Softener Re-piping</td>
<td>Maintenance</td>
<td>Re-pipe water softeners to provide soft water for both hot and cold water.</td>
<td>$18,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IP-0011</td>
<td>10/10/13</td>
<td>Plumbing Fixture Replacement</td>
<td>Replacement</td>
<td>Replace toilet room fixtures and classroom sinks in 1966 Wing. (24 fixtures @ $2,500/Fixture)</td>
<td>$60,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0012</td>
<td>10/10/13</td>
<td>Replace Galvanized Piping</td>
<td>Replacement</td>
<td>Galvanized water piping is near the end of its life expectancy and should be inspected for scheduled, phased replacement. Partially completed in remodel project of 2015 - $20,000</td>
<td>$10,000</td>
<td>8/1/15</td>
<td>Partially Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>-----------------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
</tr>
<tr>
<td>IP-0013</td>
<td>10/10/13</td>
<td>Chiller Replacement</td>
<td>Energy Eff. & Equipment Age</td>
<td>Replace the current outdoor air-cooled chiller with a new high efficiency variable speed chiller.</td>
<td>$150,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0014</td>
<td>10/10/13</td>
<td>Energy Recovery Unit</td>
<td>Energy Eff. And Noise control</td>
<td>Reduce the fan speed and re-balance the existing roof-mounted energy recovery unit to 50% of current capacity to reduce unit noise. Add a new unit of similar capacity and revise existing ductwork as required to accommodate both units.</td>
<td>$50,000</td>
<td>12/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0015</td>
<td>10/10/13</td>
<td>Gym AHU System</td>
<td>Capacity and Control</td>
<td>Replace the existing air handling system serving the gymnasium to provide adequate heating and cooling capacity and control.</td>
<td>$75,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0016</td>
<td>10/10/13</td>
<td>Panelboard Replacement in 1966 Wing</td>
<td>Equipment Upgrade</td>
<td>Replace the 1966 panelboards and feeder with new.</td>
<td>$42,200</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0017</td>
<td>4/5/17</td>
<td>Landscape</td>
<td>Maintenance</td>
<td>Remove sod and install artificial turf in playground area</td>
<td>$10,000</td>
<td>8/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0018</td>
<td>10/10/13</td>
<td>Classroom Power Upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacles to the classrooms as required.</td>
<td>$11,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0019</td>
<td>10/10/13</td>
<td>Door Contact Switches</td>
<td>Security Upgrade</td>
<td>Add exterior door security contact switches 21 Drs. @ $400 ea.</td>
<td>$10,400</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0020</td>
<td>1/6/14</td>
<td>Playground equipment update</td>
<td>Safety</td>
<td>Per Quote, replaced existing, original equipment with age appropriate equipment.</td>
<td>$34,064</td>
<td>8/15/15</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0021</td>
<td>Remove from list</td>
<td>CCTV System</td>
<td>Security Upgrade</td>
<td>Replace existing IP CCTV system with new IP CCTV system.</td>
<td>$46,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IP-0022</td>
<td>4/24/14</td>
<td>Surveillance Cameras</td>
<td>Security Upgrade</td>
<td>Add 1 inside camera</td>
<td>$795</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0023</td>
<td>6/24/16</td>
<td>Replace exterior lighting</td>
<td>Energy</td>
<td>Replace all exterior lighting with LED</td>
<td>$30,000</td>
<td>1/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0024</td>
<td>4/14/16</td>
<td>Stairwell issue</td>
<td>Safety</td>
<td>Weld bollards to the guardrails in the C stairwell to block off potential fall areas for students</td>
<td>$28,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0025</td>
<td>4/14/16</td>
<td>Playground replacement</td>
<td>Safety</td>
<td>Replace aging structure, plastic coating is deteriorating and parts are obsolete</td>
<td>$50,000</td>
<td>6/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>--</td>
<td>--------------</td>
<td>--</td>
<td>-----------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>IP-0026</td>
<td>3/27/17</td>
<td>Wall Removal</td>
<td>Operational</td>
<td>Remove wall to create one office in Rooms 118/120. Includes elec, data, carpet, paint & ceiling work.</td>
<td>$8,800</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0027</td>
<td>4/20/17</td>
<td>LMC reheat</td>
<td>System upgrade</td>
<td>Install reheats in LMC to correct a design flaw from original design</td>
<td>$15,800</td>
<td>8/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>IP-0028</td>
<td>2/6/18</td>
<td>Replace failing boiler</td>
<td>Operational</td>
<td>Replace the existing boiler that is currently in poor condition</td>
<td>$50,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0029</td>
<td>3/27/2018</td>
<td>New Interior LED lighting and digital programmable controls</td>
<td>System Upgrade</td>
<td>Replace all existing fluorescent interior lighting fixtures with new LED type. Provide new digital programmable networked lighting controls for energy efficiency</td>
<td>$247,530</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0030</td>
<td>3/27/2018</td>
<td>Upgrade existing fire alarm system to Voice Evac</td>
<td>Technology Upgrade</td>
<td>Upgrade the existing addressable fire alarm system to Voice Evac type to match industry standard for all schools.</td>
<td>$105,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0031</td>
<td>4/02/2018</td>
<td>Replace existing clock system with new.</td>
<td>Technology Upgrade</td>
<td>Replace existing obsolete clock system with a new system.</td>
<td>$20,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0032</td>
<td>4/02/2018</td>
<td>Electronic Door Access Control</td>
<td>Security Upgrade</td>
<td>Add electric door strikes with key fob readers on additional exterior and interior doors.</td>
<td>$12,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0033</td>
<td>3/27/2018</td>
<td>Remove existing Phone CAT 3 cable and replace with CAT6</td>
<td>System Upgrade</td>
<td>Remove existing CAT3 cable and jacks and replace with CAT6 cable and jacks.</td>
<td>$30,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IP-0034</td>
<td>3/27/2018</td>
<td>Remove existing CATV system wiring, equipment and jacks</td>
<td>Operational</td>
<td>Remove existing COAX cable, equipment and jacks no longer used for the CATV system.</td>
<td>$5,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>IP-0035</td>
<td>3/8/18</td>
<td>Front entrance pavement along accessible route is not compliant, G4</td>
<td>Failure</td>
<td>Correct driveway pavement to be flush with entrance sidewalk. Currently the driveway is 1.5" higher than the sidewalk.</td>
<td>$9,500</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0036</td>
<td>3/8/18</td>
<td>Driveway pavement failure, F5</td>
<td>Failure</td>
<td>Reconstruct approximately 1500 sf of driveway.</td>
<td>$22,500</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0037</td>
<td>3/8/18</td>
<td>Playscape, D4, B3</td>
<td>Code</td>
<td>No ADA accessibility or equipment.</td>
<td>$9,500</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0038</td>
<td>3/8/18</td>
<td>ADA signage, A4, G5</td>
<td>Code</td>
<td>ADA signs do not meet Code. (bottom of sign to be 60" above grade.</td>
<td>$1,400</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>IP-0039</td>
<td>3/8/18</td>
<td>Broken and dislocated sidewalks at west entrance, D2</td>
<td>Failure</td>
<td>Replace broken and displaced sections (2).</td>
<td>$600</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>IP-0040</td>
<td>3/8/18</td>
<td>Unstable bench, G3</td>
<td>Maintenance</td>
<td>Repair bench construction so the seat is stable.</td>
<td>$300</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IP-0041</td>
<td>3/8/18</td>
<td>Add CW to softener system</td>
<td>Maintenance</td>
<td>Repipe water piping to soften the CW to entire bldg</td>
<td>$18,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>IP-0042</td>
<td>4/5/18</td>
<td>Original Building HVAC Replacement</td>
<td>Upgrade & Energy Efficiency Improvements</td>
<td>Remove and replace the HVAC serving the original building construction that was not upgraded in the 2015 project. Provide new VAV systems served by the hot water and chilled water systems with new Schneider Electric digital controls as an extension of the 2015 system.</td>
<td>$25 per square foot of area involved</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
FACILITIES CONDITION ASSESSMENT

Facility: Northern Hills Elementary (2014)
910 East Avenue North
Onalaska, WI 54650

BUILDING DATA

<table>
<thead>
<tr>
<th>Building Age</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Building Construction</td>
<td>1972</td>
</tr>
<tr>
<td>Northside Classroom Wing Addition</td>
<td>1991</td>
</tr>
<tr>
<td>Northern Hills Remodeling & Addition</td>
<td>2014</td>
</tr>
</tbody>
</table>

2014 Additions & Remodeling
Remodeled Area: 57,918 SF
Addition (2014): 36,093 SF
Total: 94,011 SF

Building Occupancy Classification: Educational Group E

Construction Type: Type II-B

Parking
East Side and South Side Parking Lots: 71 Stalls
Visitor Parking (East Ave. side): 8 Stalls
CONDITIONS ASSESSMENT

1.0 The Northern Hills Elementary School was remodeled and added onto as part of the 2014 project as basically a new facility. The intent of the project was to salvage most of the original 1972 elementary and 1991 classroom wing. The combined remodeled and new construction totaled approximately 94,000 SF. Site work moved the main entrance from the south side to the west side (East Avenue side) of the building and integrated within the existing site.

2.0 In general, the new additions were constructed with exterior masonry walls with face brick cladding. Accent areas were designed with prefinished ribbed metal wall panels. Roof framing included steel joists and metal decking. Roofing consisted of a combination of single-ply rubber ballasted and full-adhered. The facility was completely sprinklered.

3.0 The new and remodeled areas are comprised of expanded and added classrooms, new gymnasium, kitchen, cafeteria, library and support spaces.

4.0 Infrastructure included new plumbing systems, HVAC and electrical services.

5.0 The entire building was designed to be handicap accessible with elevator access between floor levels. Accessible building access is provided to all entrances.

 Recommended Action
 Rework and modify entrance system to enhance ADA access and security. NH-0040

6.0 The building design incorporated energy efficiencies including increased roof and wall insulation, thermally efficient aluminum windows, energy efficient light fixtures and new HVAC systems.

7.0 Auxiliary Buildings: The existing storage garage is a 24’ x 24’ wood framed structure located off the northeast corner of the school and utilized for miscellaneous equipment. The structure consists of a wood stud framed walls on a concrete floor slab, prefabricated wood trusses, vinyl lap siding and asphalt shingled roof.

 Recommendations
 In general, the garage structure appears to be in satisfactory condition. The asphalt shingles should provide several more years before it becomes necessary to replace the shingles.
The hollow metal doors should be scheduled for refinishing with a high-performance paint coating to extend the life of the doors.

Add pole light at north side of garage to illuminate gazebo area.
Northern Hills Elementary School
Site Facility Assessment Comments

Northern Hills School has had a complete site improvement project finished last year for most of the site. There were some specific places that are identified in the Assessment that should be addressed in the near future due to maintenance concerns. The east parking area is now the oldest paving on the site. This paving is in serviceable condition for the foreseeable future.
Plumbing

The following report is the result of a site visit by Bob Novak, Tailored Engineering, March, 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations
 1. Entire building Plumbing systems were new in 2014
 2. There is an Exterior grease interceptor.
 3. Water heaters are instantaneous gas, there are 2 units.

B. Recommendations
 1. General maintenance is all that is needed for the Plumbing systems

C. Expected Remaining Lifespan
 1. Equipment should function without major maintenance issues for 10 Yrs.

Plumbing Fixtures

A. Observations
 1. Plumbing fixtures are new.

B. Recommendations
 1. Normal Maintenance.

C. Expected Remaining Lifespan
 1. Plumbing fixtures and associated faucets should have a 25 YR life span, then Faucets/control valves will need replacement.

Sanitary Piping

A. Observations
 1. Sanitary piping is SCH40 PVC.
Northern Hills Elementary School
Onalaska, Wisconsin

B. Recommendations
 1. Normal Maintenance.

C. Expected Remaining Lifespan
 1. 50 Yr lifespan can be expected.

Storm Piping

A. Observations
 1. Storm Drainage and Storm sewer piping are new.

B. Recommendations
 1. Normal Maintenance.

Domestic Water Piping

A. Observations
 1. The building is supplied by a 6” water service that is primarily for the existing chiller and is provided with its own meter and backflow preventer.
 2. The building is supported by a 2” water service and 2” water meter which appears to be appropriately sized for the building demand.
 3. New piping is CPVC pipe with solvent cement joints.

B. Recommendations
 1. Normal Maintenance

C. Expected Lifespan
 1. Piping should be functional for 40 yrs, Valves will need maintenance after 25 yrs.

Fire Protection System

D. Observations
 1. The building is supplied by a new 6” water service that only serves the FP system.

E. Expected Lifespan
 1. System should have a 40 Yr lifespan, normal testing and maintenance will be needed.
HVAC

The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on August 2, 2013 with a follow up to update the building status on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. The building heating system consists of two (2) Thermal Solutions high-efficiency condensing hot water boilers. One boiler is rated at 2,910,000 btu output while the second boiler is rated at 1,900,000 btu output. The pumping system is a primary-secondary arrangement with variable flow system pumps. Each boiler is served by an inline primary pump while the system main and stand-by pumps are piped in parallel in the secondary loop. The system pumps are each served by a variable frequency drive to modulate the system flow based on building load conditions.

2. The building cooling is provided by a 150 ton Multi-Stack water-cooled modular chiller. The original 100 ton portion of the chiller was installed in 2007 as part of an HVAC renovation project. An additional 50 ton module was added on as part of the 2015 building addition and renovation project. The chiller condenser is cooled with city water that runs straight through the condenser to the city sanitary system. The pumping system is a primary-secondary arrangement with a single constant flow chiller primary pump and a single variable flow system pump. The system pump is served by a variable frequency drive to modulate the system flow based on building load conditions.

3. The entire building is served by four (4) modular air handling units. The classroom areas are served by two (2) variable volume air handling units with hot water VAV boxes. The gymnasium and cafeteria areas are each served by individual single-zone VAV air handling units. All of the air handling systems incorporate demand control ventilation utilizing carbon dioxide sensors to modulate the amount of fresh outdoor air required to each system based on actual load conditions.

4. The building is controlled by a Schneider Electric direct digital control system that was installed as part of the 2015 building addition and renovation project.

B. Observations

1. The entire HVAC system was installed new in 2015 and is in excellent condition.
C. Recommendations

1. Continue to maintain the existing HVAC system and the Schneider Electric digital control system. We recommend maintaining the software with the latest updates to keep the system current.
Electrical System Review (Updated 3/8/2018):
The following report is the result of a site visit by Galileo Consulting Group, LLC that occurred on March 8, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The building was originally constructed in 1971. A complete renovation with new additions project was performed in 2015.

Main Electrical Service
Existing Data
A. This school has a 2000 amp 480Y/277 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The exterior C/T cabinet is located adjacent to the building service transformer. The meter socket is mounted on the C/T cabinet. The main switchboard is located inside in the basement by the Gymnasium. The main service switchboard consists of a 2000 amp electronic circuit breaker, a distribution section for the branch feeders. There is space available for several spare circuit breakers. The main switchboard has surge protection.

Observations
B. Excellent condition.

Expected Remaining Lifespan
A. The expected remaining lifespan of the main service switchboard is about 35+ more years.

Recommendations
B. None

Panelboards
Existing Data
A. The panelboards are Square ‘D’.
B. Panelboards are located throughout the school and have plenty of spare circuit breakers and blank spaces for additional circuit breakers to be added.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. 35+ more years.

Recommendations
A. None
Northern Hills Elementary School
Onalaska, WI

Generator

Existing Data

A. This building has a 150 KW, 480/277 VAC ‘Generac’ natural gas fueled generator. The generator is liquid cooled. The generator is located outside.

B. There are Two (2) automatic transfer switches. One is for ‘life – safety’ branch, the other is for Equipment branch.

Observations

A. Excellent condition.

Recommendations

A. None

Lighting Fixtures and Controls

Existing Data

A. The classrooms have 2x4 LED lay-in fixtures. LED Room Controllers connected to the building computer Network system. Two (2) dimming switches, occupancy sensor and daylight sensing for energy efficiency and automatic shutoff.

B. The corridors have 2x2 LED fixtures connected to several digital programmable lighting control panels strategically located throughout the building. There is night lighting through-out the building. Emergency Egress lighting is connected to the Life Safety branch of the emergency generator system.

C. Exterior building perimeter and parking lots are LED lighting fixtures. They are connected to several lighting control panels located through-out the building. Fixtures are programmed to energize from dusk to dawn, and/or from dusk to automatic time off.

D. The entire building has energy efficient LED lighting and digital programmable lighting controls networked to the building computer system.

Observations

A. Excellent condition.

Expected Remaining Lifespan

E. 20+ more years.

Recommendations

A. For Specialized Instruction areas such as; Special Education, Childrens Day Schools, Disabilities, Sensory, ETC. recommend installing Tunable LED lighting and associated digital controls. Budget - $4.00/sq.ft.

Wiring Devices

Existing Data

A. The receptacles and toggle switches are commercial grade 20A with stainless steel plates.

B. Several receptacles on each wall in each classroom with 2-20 amp. Branch-circuits minimum.

Observations

A. Excellent condition.

Expected Remaining Lifespan

A. 35+ more years.

Recommendations

A. None
Fire Alarm System

Existing Data
A. The fire alarm is an EST3X addressable Voice Evac system.
B. There are addressable pull stations by all exterior doors.
C. There are ceiling mounted speaker strobe devices in the corridors and classrooms.
D. There are smoke detectors in storage rooms. There are heat detectors in mechanical rooms.
E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
F. All fire alarm cabling is installed in EMT conduit.
G. The building is sprinklered.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. 20+ more years.

Recommendations
A. None

Clock System

Existing Data
A. There is a Rauland wireless synchronized clock system.
B. There are Rauland 13” analog clocks in the classrooms, corridors, offices, and other public areas. There are 16” analog clocks in the gymnasium and Commons areas.
C. The bell tone is controlled by the master clock controller.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. 20+ more years.

Recommendations
A. None
Intercom System

Existing Data
A. There is a Rauland Telecor intercom system.
B. There are recessed ceiling mounted intercom speakers in the corridors and classrooms.
C. The intercom is accessed through the phone system.
D. The bell system is toned through the intercom speakers.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. 30+ more years.

Recommendations
A. None.

Phone System

Existing Data
A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

Observations
A. Excellent condition.
B. Additional phones can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the Mitel 3300 IP phone system is about 10 more years.

Recommendations
A. None
Data System

Existing Data
A. There is a MDF data rack and several IDF rooms throughout the building.
B. The IDF data racks are connected to the MDF data rack with fiber optic cable and Copper backbone cables. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.
C. The data cable is CAT6 plenum rated which is routed to patch panels in the data racks.
D. The patch panels in the data racks are CAT6.
E. Wireless Access Point system was recently upgraded for the School District in 2017-2018. It has a density of 1 access point per classroom. The Computer Network wireless access system is adequate for today's needs and for anticipated near future.
F. There is a rack mounted UPS.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. The CAT6 data cabling is about 12-15 more years.
B. The expected remaining lifespan of the network equipment is about 10 more years.

Recommendations
A. None.

Security System

Existing Data
A. There is a Honeywell security system. The system includes a main control panel, several motion and break-glass sensors, exterior door contacts and entry key pads installed throughout the building. The system is expandable if needed.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 15-20 more years.

Recommendations
A. None

CCTV System

Existing Data
A. There is a server based IP CCTV system used throughout all the buildings in the district.
B. There are interior and exterior fixed color IP cameras.
C. Current Network recorder has the capability of recording for 30 days.
D. Several cameras located throughout the interior and exterior of the building.

Observations
E. Excellent condition.

Expected Remaining Lifespan
A. The expected remaining lifespan of the CCTV system is about 10 more years.

Recommendations
A. None

Access Control System
Existing Data
A. There is an RS2 System door access control system installed for the District in 2015 - 2016.
B. All the exterior doors have fob entrance readers where desired and the doors without fob readers have magnetic contact switches for monitoring.

Observations
A. Excellent condition.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 15-20 more years.
FACILITY
Northern Hills Elementary

Updated: March 2018

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH-0001</td>
<td>10/10/13</td>
<td>Re-roofing 1991 wing</td>
<td>Replacement</td>
<td>Remove and replace existing ballasted single-ply-rubber roofing at 1991 wing with new fully adhered rubber w/ new insulation</td>
<td>$88,600</td>
<td>8/1/15</td>
<td>1</td>
</tr>
<tr>
<td>NH-0002</td>
<td>10/10/13</td>
<td>Caulking Replacement</td>
<td>Maintenance</td>
<td>Remove and re-caulk precast concrete panel joints around building perimeter.</td>
<td>$11,400</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0003</td>
<td>10/10/13</td>
<td>Replace O.H. Door</td>
<td>Replacement</td>
<td>Replace overhead door at east end.</td>
<td>$1,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0004</td>
<td>10/10/13</td>
<td>Replace Metal Doors</td>
<td>Replacement</td>
<td>Remove and replace existing worn hollow metal doors and frames at east end.</td>
<td>$4,300</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0005</td>
<td>10/10/13</td>
<td>Replace Aluminum Entrances</td>
<td>Replacement</td>
<td>Replace aluminum entrances at entrances ‘B’ & ‘D’</td>
<td>$20,300</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0006</td>
<td>10/10/13</td>
<td>Replace Aluminum Windows</td>
<td>Replacement</td>
<td>Replace aluminum windows with new thermally improved glass and framing. Remodel wall section below windows.</td>
<td>$36,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0007</td>
<td>10/10/13</td>
<td>Replace Aluminum Entrance</td>
<td>Replacement</td>
<td>Replace aluminum entrance at south side entrance ‘A’</td>
<td>$17,600</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0008</td>
<td>10/10/13</td>
<td>Remodel toilet rooms</td>
<td>ADA</td>
<td>Remodel (1) boys and (1) girls toilet rooms for ADA accessibility</td>
<td>$8,800</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0009</td>
<td>10/10/13</td>
<td>New Wheelchair lifts</td>
<td>ADA</td>
<td>Installation of new wheelchair lifts to access gymnasium and lower level of Multi-Media Center</td>
<td>$68,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0010</td>
<td>11/4/13</td>
<td>Metal Fascia Repairs</td>
<td>Maintenance</td>
<td>Repair or replace existing metal fascia panels where panel ribs are missing or damaged.</td>
<td>$3,200</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0010</td>
<td>10/10/13</td>
<td>Tree Removal Site Grid Location C2</td>
<td>Safety</td>
<td>Poor condition and poor branching. Remove and replace.</td>
<td>$400</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>-----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NH-0011</td>
<td>10/10/13</td>
<td>Sidewalk replacement site grid location D3</td>
<td>Safety</td>
<td>Sidewalk section settled at downspout, replace.</td>
<td>$600</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0012</td>
<td>10/10/13</td>
<td>Playscape maintenance site grid location E3</td>
<td>Safety</td>
<td>Chips compacted. Remove and install or replace.</td>
<td>$4,000</td>
<td>6/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0014</td>
<td>10/10/13</td>
<td>Water softener replacement</td>
<td>Equipment Replacement</td>
<td>Water softeners for this building should be replaced and sized appropriately to accommodate the hot and cold water demand for the building.</td>
<td>$10,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0015</td>
<td>10/10/13</td>
<td>Plumbing fixture replacement</td>
<td>Equipment Replacement</td>
<td>All toilet rooms and classroom sinks should be scheduled for replacement with new ADA compliant fixtures. (34 fixtures @ $2,500)</td>
<td>$85,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0016</td>
<td>3/19/14</td>
<td>Ponding at Spruce St. sidewalk</td>
<td>Safety</td>
<td>Runoff fills the detention areas to overflowing the sidewalk and sometimes freezes to glare ice.</td>
<td>$0</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0017</td>
<td>10/10/13</td>
<td>Replace Grease Interceptor</td>
<td>Equipment Replacement</td>
<td>The existing interior grease interceptor is in poor condition and should be budgeted for replacement with new interior model.</td>
<td>$5,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0018</td>
<td>10/10/13</td>
<td>Sanitary piping replacement</td>
<td>Piping Replacement</td>
<td>Sewers are in relatively poor condition. The owner indicated multiple toilet rooms that appear to have drainage problems.</td>
<td>$25,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0019</td>
<td>10/10/13</td>
<td>Exterior storm sewer replacement</td>
<td>Poor Drainage</td>
<td>Replace remaining storm sewer with adequate sized to handle the storm demand.</td>
<td>$9,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0020</td>
<td>10/10/13</td>
<td>Galvanized water piping replacement</td>
<td>Piping Replacement</td>
<td>Galvanized water piping is near the end of its life expectancy and should be scheduled for replacement.</td>
<td>$50,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0021</td>
<td>10/10/13</td>
<td>New Boiler Plant</td>
<td>Energy Eff. & Equipment Age</td>
<td>Remove both of the existing boiler plants and replace with a single central high efficiency boiler plant with variable flow pumping and digital control.</td>
<td>$175,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0022</td>
<td>10/10/13</td>
<td>New VAV System in 1991 Wing.</td>
<td>Energy Eff. & Control</td>
<td>Remove the constant volume booster coil system with pneumatic control currently the 1991 area and replace w/ new VAV system and digital control. Increase the capacity of the current chilled water system by adding an additional module, replace the pumps and variable frequency drives, and route new piping to the VAV air handler.</td>
<td>$395,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0023</td>
<td>10/10/13</td>
<td>Remodel 1972 HVAC</td>
<td>Zone control and comfort</td>
<td>Revise and/or replace the existing ductwork distribution systems to properly zone all areas of the building. Replace VAV boxes as needed and reuse existing boxes where possible.</td>
<td>$350,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>-----------</td>
<td>--------------</td>
<td>----------------------------------</td>
<td>--------------------</td>
<td>---</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NH-0024</td>
<td>10/10/13</td>
<td>Add surge protection</td>
<td>Equipment Upgrade</td>
<td>Add surge protection device to main service switchboard.</td>
<td>$3,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0025</td>
<td>10/10/13</td>
<td>New Electric Service</td>
<td>Equipment Upgrade</td>
<td>Provide new electric service switchboard</td>
<td>$50,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0026</td>
<td>10/10/13</td>
<td>1971 Panelboard Replacement</td>
<td>Equipment Upgrade</td>
<td>Replace the 1971 panelboards and feeder with new panels.</td>
<td>$21,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0027</td>
<td>10/10/13</td>
<td>Generator Replacement</td>
<td>Equipment Upgrade</td>
<td>Provide new natural gas generator</td>
<td>$40,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0028</td>
<td>10/10/13</td>
<td>Automatic Transfer Switch</td>
<td>Equipment Upgrade</td>
<td>Provide new automatic transfer switch</td>
<td>$5,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0029</td>
<td>10/10/13</td>
<td>Separate Life Safety Loads</td>
<td>Code Compliance</td>
<td>Provide additional automatic transfer switch to separate life safety loads from non-life safety (equipment) loads on the emergency power distribution system.</td>
<td>$25,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0030</td>
<td>10/10/13</td>
<td>Emergency Lighting Relay Upgrade</td>
<td>Code Compliance</td>
<td>Provide UL 924 listed emergency bypass relays on the emergency generator egress lighting circuits.</td>
<td>$8,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0031</td>
<td>10/10/13</td>
<td>Classroom lighting replacement</td>
<td>Energy Conservation</td>
<td>Replace the existing classroom light fixtures with new 2x4 acrylic lens 3-lamp fixtures with occupancy sensors and dual level lighting control.</td>
<td>$97,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0032</td>
<td>10/10/13</td>
<td>Add exterior security lighting</td>
<td>Security Upgrade</td>
<td>Add exterior security lights</td>
<td>$2,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0033</td>
<td>10/10/13</td>
<td>Classroom power upgrade</td>
<td>System Upgrade</td>
<td>Add additional circuits and receptacles to the classrooms as required. (80 fixt. @ $200/Fixt.)</td>
<td>$16,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0034</td>
<td>10/10/13</td>
<td>Add classroom fire alarm</td>
<td>Code Compliance</td>
<td>Add horn stobe fire alarm devices to classrooms (15 @ $300/device)</td>
<td>$4,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0035</td>
<td>11/11/13</td>
<td>Door contact switches</td>
<td>Security Upgrade</td>
<td>Add exterior door security switches (16 @ $400/door)</td>
<td>$6,400</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0036</td>
<td>11/11/13</td>
<td>ADA Door Openers</td>
<td>ADA</td>
<td>Spruce ST. Entrance</td>
<td>$3,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>NH-0037</td>
<td>1/6/14</td>
<td>Playground equipment update</td>
<td>Safety</td>
<td>Per Quote</td>
<td>$29,986</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0038</td>
<td>4/9/14</td>
<td>Install bio filter in retention pond</td>
<td>Safety/Conservation</td>
<td>Install bio filter, pavers, mulch and plantings in and around retention pond</td>
<td>$4,650</td>
<td>8/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0039</td>
<td>4/24/14</td>
<td>Surveillance Cameras</td>
<td>Safety</td>
<td>Add 3 inside and 2 outside cameras</td>
<td>$4,421</td>
<td>1/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>NH-0040</td>
<td>2/6/18</td>
<td>ADA Upgrade</td>
<td>ADA/Security</td>
<td>Rework & modify entrance system to enhance ADA access and security.</td>
<td>$6,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>NH-0042</td>
<td>4/14/16</td>
<td>Install outdoor fence</td>
<td>Safety</td>
<td>Install fence along east avenue $25/ft @ 433’</td>
<td>$10,825</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>NH-0044</td>
<td>3/8/18</td>
<td>Biofilter landscaping is damaged, A1</td>
<td>Maintenance</td>
<td>Repair the damage to the mulch and to the drain</td>
<td>$600</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Riders Club Road Site

2013
Facilities Condition Assessment
School District of Onalaska
FACILITIES CONDITION ASSESSMENT

FACILITY: Activities Building
Riders Club Road Site
Onalaska, WI 54650

BUILDING DATA

<table>
<thead>
<tr>
<th>Building Age</th>
<th>Completed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Building Construction:</td>
<td>1999</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Area:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,530 SF (enclosed)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Building Occupancy Classification:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3 Assembly</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Construction Type:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type III</td>
</tr>
</tbody>
</table>

Building Use

The Activities Building was constructed in 1999 as a support facility for the athletic fields located on the Riders Club Road site. The building design includes two separately enclosed ‘pods’ housing men’s and women’s toilet rooms in the west pod, and concessions and equipment storage in the east pod. The building is unheated and typically unoccupied. The east pod was planned as a concessions serving room with counter service.
ROOM SCHEDULE

<table>
<thead>
<tr>
<th>Area Designation</th>
<th>Qty.</th>
<th>Floor Area (NSF)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men’s Toilet Room</td>
<td>1</td>
<td>211 SF</td>
<td></td>
</tr>
<tr>
<td>Womens Toilet Room</td>
<td>1</td>
<td>211 SF</td>
<td></td>
</tr>
<tr>
<td>Mechanical room</td>
<td>1</td>
<td>140 SF</td>
<td></td>
</tr>
<tr>
<td>Concessions</td>
<td>1</td>
<td>211 SF</td>
<td></td>
</tr>
<tr>
<td>Equipment Storage</td>
<td>1</td>
<td>431 SF</td>
<td></td>
</tr>
</tbody>
</table>

CONDITIONS ASSESSMENT

1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

Observations:
The masonry surfaces appear to be in satisfactory condition. The split-faced concrete block was re-coated.

Recommendations:
No work required.

1.2 ROOFING

The roof system consists of asphalt shingles over engineered wood joists with plywood sheathing.

Observations:
The asphalt shingled roofing was replaced in 2015.

Recommendations:
No work required

1.3 EXTERIOR DOORS

All existing doors are hollow metal and appear to be in satisfactory condition. The doors have lever handled latchsets for ADA accessibility. The east side pod includes two overhead coiling counter doors with some amount of damage.

Recommendations:
Continue use of overhead coiling counter doors but consider installation of protective steel grilles to reduce the potential ongoing damage.
1.4 EXTERIOR METAL ROOF EDGE FASCIA PANELS AND CEILING SOFFITS

The roof edge fascia and exposed exterior ceiling soffits are of prefinished metal and are in good condition.

Recommendations:
No immediate work is necessary.

2.0 BUILDING INTERIOR FINISHES

Flooring: All interior floors are of exposed sealed concrete slab.
Walls: Painted concrete block
Ceilings: Wood

Observations:
In general, the men’s and women’s toilet rooms have been well maintained. With the exception of some paint peeling off the masonry wall surfaces, the interior surfaces of the toilet rooms are in good condition.

Recommendations:
No immediate work necessary.

3.0 PLUMBING FIXTURES

Observation:
The existing toilets, urinals and wall-hung lavatories all appear to be in satisfactory condition. The exterior wall-hung drinking fountain is showing signs of corrosion but remains functional.

Recommendations:
No work required. The exterior drinking fountain can continue to be utilized until damaged or worn out.

4.0 HANDICAP ACCESSIBILITY

4.1 ACCESSIBLE ROUTES

An “accessible route” is defined as a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site parking lots. The current layout of the Activities Building complies with the requirement.

4.2 ACCESSIBLE PARKING

Where parking is provided, accessible parking spaces shall be provided as follows:

-Total parking spaces provided: 101–150
-Required number of accessible spaces: Five (5)

Van accessible spaces shall be provided for every eight (8) accessible stalls.
Existing Conditions
The existing east side parking lots include a total of 143 spaces. There are currently five (5) designated handicap parking stalls.

Recommendations:
1. Restripe one (1) van accessible stall with adjoining access aisle.
2. If necessary, install post-mounted signs at each handicap accessible stall with special designated sign for van accessible space.

4.3 ACCESSIBLE ENTRANCE

Existing Conditions
Access to the toilet rooms and multi-purpose room comply with the Door Hardware ADA guidelines.

4.4 ACCESSIBLE TOILET FACILITIES

Existing Conditions
The toilet rooms were designed in compliance with ADA guidelines.

Recommendations:
No work required.

4.5 SIGNAGE

Existing Conditions:
There is currently ADA compliant signage mounted on the doors to the men’s and women’s toilet rooms.

Recommendations:
No work required.
Riders Club Athletic Fields
Site Facility Assessment Comments

The Riders Club Athletic Fields are in good shape except where identified in the Assessment that should be addressed in the near future due to code or safety concerns. The site is not in compliance with ADA code for parking. Where signing and striping can be implemented to create current code compliant parking it is required to be done at the time of any sealcoat and restripe operation including signage meeting current ADA standards. The main issue is the current spaces have no signage. Some reconfiguration of the lines should be considered to maintain function of the access drive to the OmniCenter. There is a storm drain outfall north of the varsity soccer field that needs repair as outlined in the Condition Assessment Page.
The following report is the result of a site visit by Bob Novak, Tailored Engineering, that occurred on March 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations
1. This is a Seasonal Building

B. Recommendations
1. Provide continual maintenance on plumbing system.

C. Expected Remaining Lifespan
1. Routine maintenance items will need to be addressed
2. Seasonal buildings will require more maintenance, gaskets and non use are hard on Equipment.

Plumbing Fixtures

A. Observations
1. Plumbing fixtures located within the toilet rooms and classrooms are generally in good condition.
2. Flush valves for the urinals and water closets. These items should be replaced
3. Toilet rooms are not ADA compliant per today's standards.

B. Recommendations
1. Plumbing Flush valves should be scheduled for replacement.
2. Toilet rooms should be modified to be ADA compliant.

C. Expected Remaining Lifespan
1. Plumbing fixtures and associated piping are in working condition. Estimated cost of flush valve replacement is $500 per fixture.
Sanitary Piping

A. Observations
 1. Sanitary piping is Schedule 40 PVC piping.

B. Recommendations
 1. NONE

Domestic Water Piping

A. Observations
 1. Piping is Type “L” copper tube.
 2. The building is supplied by a 2” water service that is primarily for the existing chiller and is provided with its own meter and backflow preventer.
 3. The building is supported by a 2” water service and 2” water meter which appears to be appropriately sized for the building demand.

B. Recommendations
 1. On going drain down of system for winter shut down.

C. Expected Remaining Lifespan
 1. Water piping system should have a 50 yr service life.
Electrical System Review (Updated 4/03/2018)
The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

Electric Service and Panelboards
Existing Data

A. There Two (2) Electric Services feeding this building:

Electric Service #1: 200 Amp., 120/208VAC, 3-Phase, 4-Wire service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of a 200-amp main circuit breaker. The panelboard is General Electric. There are few spaces available for future circuit breakers. This service feeds the concession, storage and mechanical rooms. There is a 125 amp., 120/208VAC, 3-Phase, 4-Wire General Electric sub-panelboard located in the Mechanical room with several spaces available for future branch-circuits.

Electric Service #2: 225 amps., 480/277VAC, 3-Phase, 4-Wire service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of a 225amp main circuit breaker. The panelboard is Square 'D'. There are several spaces available for future circuit breakers. This service primarily feeds the Athletic Fields lighting system.

Observations

A. The panelboards are in good operating condition.

Expected Remaining Lifespan

B. The expected remaining lifespan of the main distribution panelboard is about 20-25 more years.

Recommendations

C. None.

Lighting Fixtures and Controls

Storage Area

Concession Area
Riders Club Road
Onalaska, WI

Mechanical Room

Exterior

Restrooms
Existing Data
A. In the Storage Area there are 2-lamp fluorescent strip lights with electronic ballasts and T8 lamps.
B. In the Concession Area there are 2-lamp fluorescent ‘wrap’ around with electronic ballasts and T8 lamps.
C. In the Mechanical Room there are 2-lamp fluorescent strip lights with electronic ballasts and T8 lamps.
D. The Exterior fixtures are LED wall-packs and were installed in 2017.
E. In the Restrooms there are 2-lamp fluorescent ‘vandal proof’ lights with electronic ballasts and T8 lamps.

Observations
A. The exterior lighting fixtures are LED and are in excellent working condition.
B. The interior lighting fixtures are fluorescent and installed with the original building construction.
C. There are occupancy sensors in the Restrooms.

Expected Remaining Lifespan
A. 0 – 10 years.

Recommendations
A. Replace interior fluorescent lighting fixtures with new energy efficient LED lighting fixtures. Budget - $7,000.
Existing Data

A. There are 15 amp., and 20 amp. receptacles and toggle switches with metal cover plates.

Observations

A. The receptacles and toggle switches are adequate and in good working condition.

B. The Concession Area has G.F.C.I. protection.

Expected Remaining Lifespan

A. 10 – 15 more years.

Recommendations

A. None.
Existing Data
A. There is phone service into the building in the Mechanical Room Area.

Observations
A. No phone or data jacks installed in the building.

Expected Remaining Lifespan
A. Not Applicable.

Recommendations
A. None.

Miscellaneous

Recommendations
A. Provide an electric wall heater in the Mechanical Room to prevent water pipes from freezing. Budget - $500.00
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>RC-0001</td>
<td>10/10/13</td>
<td>Re-stripe asphalt parking stall.</td>
<td>ADA</td>
<td>Re-stripe existing asphalt to designate van accessible space. Complete at next maintenance interval.</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>RC-0002</td>
<td>10/10/13</td>
<td>ADA parking stall signage.</td>
<td>ADA</td>
<td>Install (5) handicap accessible automobile parking stall signs and one (1) 'van accessible' stall, Complete at next maintenance interval.</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>RC-0003</td>
<td>3/4/14</td>
<td>Irrigation</td>
<td>Operational</td>
<td>Install irrigation for the 2nd baseball field</td>
<td>$16,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>RC-0004</td>
<td>10/10/13</td>
<td>JV Dugout Repair (Site Location Grid K4, L3)</td>
<td>Maintenance</td>
<td>Rotten roof on dugout, repair with treated wood</td>
<td>$18,000</td>
<td>4/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0005</td>
<td>10/10/13</td>
<td>Re-shingle roof of Activities Building.</td>
<td>Maintenance</td>
<td>Remove and replace original asphalt shingles and underlayment.</td>
<td>$9,216</td>
<td>10/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0006</td>
<td>10/10/13</td>
<td>Repainting Toilet Room Walls</td>
<td>Maintenance</td>
<td>Remove peeling wall paint, prep surface and repaint concrete masonry surfaces.</td>
<td>$1,640</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0007</td>
<td>10/10/13</td>
<td>Re-coat exterior masonry wall surfaces.</td>
<td>Maintenance</td>
<td>Re-coat exterior masonry wall surfaces.</td>
<td>$2,500</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0008</td>
<td>10/10/13</td>
<td>Re-paint hollow metal doors.</td>
<td>Maintenance</td>
<td>Prep surface and repaint (11) hollow metal doors and frames.</td>
<td>$1,300</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0009</td>
<td>3/11/15</td>
<td>Scoreboard</td>
<td>Upgrade</td>
<td>Install new baseball scoreboard</td>
<td>$15,000</td>
<td>8/1/15</td>
<td>Complete</td>
</tr>
<tr>
<td>RC-0010</td>
<td>3/8/18</td>
<td>JV Dugout, K4</td>
<td>Maintenance</td>
<td>Rotten siding on dugout, repair with treated wood</td>
<td>$800</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Project No.</td>
<td>Date</td>
<td>Description</td>
<td>Category</td>
<td>Description</td>
<td>Cost</td>
<td>Units</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--</td>
<td>--------------</td>
<td>---</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>RC-0011</td>
<td>3/8/18</td>
<td>Hole in pipe, H7</td>
<td>Maintenance</td>
<td>Shorten pipe 8' and replace riprap with Turfstone Pavers (available from Menards) pavers are 24" x 16" so 6 units would cover 32"x72".</td>
<td>$800</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RC-0012</td>
<td>4/3/18</td>
<td>Upgrade interior lighting to LED</td>
<td>Upgrade System</td>
<td>Replace existing fluorescent lighting with LED.</td>
<td>$7,000</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>RC-0013</td>
<td>4/3/18</td>
<td>Install an electric wall heater in Mechanical Room</td>
<td>Maintenance</td>
<td>Install an electric wall heater in the Mechanical Room to prevent water pipes from freezing.</td>
<td>$500</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>RC-0014</td>
<td>4/14/16</td>
<td>Baseball Concessions</td>
<td>Maintenance</td>
<td>Replace rotted building materials with correct, exterior grade materials</td>
<td>$6,000</td>
<td>5/1/17 Complete</td>
<td></td>
</tr>
<tr>
<td>RC-0015</td>
<td>10/10/13</td>
<td>Repaint steel X-bracing assemblies</td>
<td>Maintenance</td>
<td>Surface prep and paint (8) existing steel X-bracing assemblies.</td>
<td>$5,520</td>
<td>8/1/15 Complete</td>
<td></td>
</tr>
</tbody>
</table>
FACILITIES CONDITION ASSESSMENT

FACILITY

Central Kitchen
705 8th Avenue North
Onalaska, WI 54650

BUILDING AGE:

____ Original Construction
1999 Kitchen Expansion

BUILDING DATA

Building Area

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Original Construction</td>
<td>4,182 SF</td>
</tr>
<tr>
<td>1999 Kitchen Expansion</td>
<td>3,264 SF</td>
</tr>
</tbody>
</table>

Total 7,446 SF

Construction Type: Type II-B Noncombustible

Fire Protection: Non-sprinklered

SITE

Parking: 11 stalls
<table>
<thead>
<tr>
<th>Area Designation</th>
<th>Qty</th>
<th>Area (NSF)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Food Prep/Dishwashing Areas</td>
<td>1</td>
<td>2,870 SF</td>
<td></td>
</tr>
<tr>
<td>Dry Storage</td>
<td>1</td>
<td>1,217 SF</td>
<td></td>
</tr>
<tr>
<td>Offices</td>
<td>3</td>
<td>454 SF</td>
<td></td>
</tr>
<tr>
<td>Break Room</td>
<td>1</td>
<td>254 SF</td>
<td></td>
</tr>
<tr>
<td>Womens’ Toilet Rm</td>
<td>1</td>
<td>115 SF</td>
<td></td>
</tr>
<tr>
<td>Locker Corridor</td>
<td>1</td>
<td>50 SF</td>
<td></td>
</tr>
<tr>
<td>Uni-Sex Toilet Room</td>
<td>1</td>
<td>30 SF</td>
<td></td>
</tr>
<tr>
<td>Custodial Rooms</td>
<td></td>
<td>163 SF</td>
<td></td>
</tr>
<tr>
<td>Coolers & Freezers</td>
<td>2 pr.</td>
<td>566 SF</td>
<td></td>
</tr>
<tr>
<td>Delivery Van Loading Bay</td>
<td>1</td>
<td>502 SF</td>
<td></td>
</tr>
<tr>
<td>Laundry</td>
<td>1</td>
<td>46 SF</td>
<td></td>
</tr>
</tbody>
</table>
FACILITIES CONDITIONS ASSESSMENT

1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

The 1999 addition to the Central Kitchen was constructed as a steel framed structure of steel columns, wide flanged beams and open web steel bar joists and steel decking. The exterior walls were constructed of light-gauge steel studs clad with exterior gypsum sheathing and a textured stucco. The interior side of the walls are painted gypsum board. The exterior metal stud walls were insulated with 5-1/2 inch R-19 batt insulation. A continuous fascia band of ribbed metal panels was applied to the wall area above the stucco surface to match the adjoining Middle School.

Observations
In general, the exterior cladding (stucco and metal panels) is in satisfactory condition.

Recommendations
No work required.

1.2 ROOFING

The roof above the original kitchen (south half) was re-roofed in 2006 as part of the Middle School re-roofing project. The work involved removal of the stone aggregate top surface, leaving the original built-up roofing plys and insulation in place. The new roof system included adding a new layer of insulation and mechanically attached 60-mil rubber membrane. The roof system was specified as to include a 20-year ‘full-system warranty’.

The 1999 Central Kitchen Addition was built with a steel decking. The roof system consisted of a 60-mil ballasted single-ply rubber membrane over 5 inch EPS insulation.

Observations
The 2006 re-roofing appears in good condition. The ballasted roof system above the 1999 Central Kitchen addition also appears in satisfactory condition with no significant signs of deterioration.
Recommendations
Continue to inspect on an annual basis for repair work associated with the perimeter parapet and roof-top curb flashings. Cut out and strip in areas as necessary to maintain weather tightness.

1.3 **DOORS & WINDOWS**

The windows in the kitchen consist of a thermally broken aluminum storefront framing with 1 inch insulated glass.

The main south side entrance and other service doors are hollow metal doors and frames.

Observations
With the exception of the main entrance door, all other hollow metal doors and frames are in satisfactory condition. The south entrance door is showing some signs of corrosion and typical wear.

Recommendations
No work required.

2.0 **BUILDING INTERIOR**

2.1 **FLOORING**

Flooring materials include the following:

- Quarry tile in the food prep areas and uni-sex toilet room
- Carpet in offices.
- VCT in break room
- Ceramic tile women’s toilet room

Observations
Flooring appears to be well maintained with no apparent immediate need to replace or upgrade.

Recommendations
No immediate attention is necessary.

2.2 **CEILINGS**

The majority of the rooms have suspended acoustical tile. The prep kitchen area has a suspended 2’ x 4’ vinyl-face gypsum panel. Break room and offices have standard acoustical tile. The main storage room along the east side of the building has no suspended acoustical tile ceiling.

Observations
Ceiling tile and grid appear to be in satisfactory condition.
Recommendations
Monitor T-grid in food prep areas for any signs of corrosion.

2.3 WALLS

Interior partitions are of metal stud and painted gypsum board.

Observations
Wall surfaces are generally in good shape.

Recommendations
No work required.

2.4 INTERIOR DOORS & FRAMES

Interior doors are generally hollow metal doors.

Observations
No issues.

2.5 TOILET PARTITIONS

Toilet partitions in the women’s toilet room are metal.

Observations
Metal toilet stall partitions show typical signs of years of usage.

Recommendations
Partitions can continue to be used but can be changed out to solid plastic as part of any toilet room remodeling project.

2.6 FOOD SERVICE EQUIPMENT

Equipment in the steam production area is still the original equipment. One of the two 60 gallon jacketed steam kettles was written up by the State inspector will need to be replaced. The steam kettles are approaching 40-years old and both will ultimately need to be replaced. Other old equipment that will need to be considered for replacement includes the 5-door steamer, two ovens, 2-burner stove, mixer and bread slicer.
The Hobart dishwasher (1974) was replaced in 2014.

In general, the kitchen equipment in the 1999 north side addition is in satisfactory condition.

3.0 HANDICAP ACCESSIBILITY

3.1 ACCESSIBLE ROUTE

Existing Conditions
An “accessible route” is a continuous, unobstructed path leading to a building entrance from off-site (public streets) and on-site parking or walkways. The Central Kitchen site currently provides accessible routes from the dedicated staff parking lot on the east side and from the Middle School parking areas to the south of the central kitchen.
Recommended Action: No additional work is required.

3.2 ACCESSIBLE PARKING

Where parking is provided, accessible parking spaces shall be provided as follows:

<table>
<thead>
<tr>
<th>Total Parking Spaces Provided</th>
<th>Required Number Of Accessible Spaces</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 to 25</td>
<td>1</td>
</tr>
</tbody>
</table>

Van accessible spaces shall be provided for every eight accessible stalls.

Observations
The existing east side parking lot includes a total of 11 spaces. There are currently no spaces designated handicap parking stalls. The Middle School parking lot off the south side of the Central Kitchen includes designated accessible stalls, which could also be used by kitchen staff. An accessible route connects the Middle School parking lot to the main entrance of the Central Kitchen.

Recommended Action
No work.

3.3 ACCESSIBLE ENTRANCE

Existing Condition
The main entrance on the south side serves as the primary accessible entrance but does not include a door operator.

Recommended Action
No additional work is required.
3.4 ACCESSIBLE INTERIOR CIRCULATION

With the exception of the delivery van loading bay, all rooms are located on one level.

Recommendations
No action required.

3.5 ACCESSIBLE TOILET FACILITIES

The women’s toilet room includes two (2) toilets and a vanity countertop. One of the toilet compartments is designed in compliance with the ADA guidelines for maneuvering and grab bars. The second toilet compartment is of a standard nonaccessible size but projects into the space between the door and vanity counter.

A uni-sex toilet room is located adjacent to the main entrance and includes a single toilet and lavatory. The door into the toilet room is only 32” wide. The interior room dimensions are too tight to qualify the toilet room as handicap accessible under current guidelines.

Recommended Action
The existing toilet facilities were in compliance with the Code at the time of the 1999 kitchen addition and it can be assumed that the present layout is ‘grandfathered in’

Under the current ADA guidelines, the Central Kitchen does not provide for handicap accessible toilet rooms for men and women. The typical number of staff ranges from 7-10. The Building Code requires separate facilities for men and women except where the total occupant load of 15 or less. One possible solution would be to enlarge the uni-sex toilet room and designate it as a ‘mens’ toilet room. Modifications to the women’s toilet room for ADA compliance would require the removal of one toilet to accommodate wheelchair maneuverability. An existing handicap accessible toilet room is, however, located just off the NW corner of the cafeteria.

Remodeling of the two toilet rooms in the Central Kitchen area could be deferred as a future capital improvement project.
Central Kitchen
Onalaska, Wisconsin

Plumbing

The following report is the result of a site visit by Bob Novak from Tailored Engineering that occurred on March, 2018. Site observations were used in the preparation of this report.

A. Observations

1. Water heating equipment is gas fired instantaneous water heating equipment. Currently 2 units @ 199MBH each provide hot water for the Kitchen. There is a HWR pump.

2. The building is served by a Small Simplex Diamond water softener. The water softener appears to be softening hot and cold water.

3. Kitchen is served by a 2” K copper water service and a 2” water meter, water pressure is 68PSI before pressure reducing valve, piping is copper

4. Water piping to fixtures is fed underground, it is K copper.

5. Gas piping is fed to Cook area underground, there does not appear to be an emergency gas shut off valve.
6. There is a small in ground grease interceptor for the 4 compartment sink. I do not think there is a grease interceptor for the large conveyor dishwasher.

7. The Kitchen has its own Gas Meter at the NE corner of building.

B. Recommendations

1. Instantaneous water heating equipment is required to be maintained for scale on a regular basis. Annual maintenance shall be provided on equipment as required.

2. Existing water softener should be verified for proper functioning

3. A large exterior grease interceptor should be considered

4. Moving gas piping to above grade should be considered

5. Adding Emergency gas shut off should be considered

6. Replacement of CI sanitary drain piping should be considered

C. Expected Remaining Lifespan

1. The expected remaining lifespan of the water heaters is 5 years

 Heaters of this type in this usage do not have a long life cycle

2. The CI drain piping is probably in poor condition.
Central Kitchen
Onalaska, WI

Electrical System Review (Updated 4/03/2018)
The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The Central Kitchen is attached to the Middle School.

Panelboards

Existing Data

There are two (2) panelboards 'B1' and 'B2', 200 Amps., 120/208VAC, 3-Phase, 4-Wire with 42 circuits each serving the Central Kitchen, they are General Electric.

Observations

A. Panelboard ‘B1’ is full, panelboard ‘B2' has 10 empty spaces for additional branch circuit breakers.

B. The panelboards are in good working order.

Expected Remaining Lifespan

A. The expected remaining lifespan of the panelboards is about 20-30 more years.

Recommendations

A. None.
Lighting Fixtures and Controls

Existing Data

A. The kitchen has a combination of 2x4 acrylic lens 2-lamp fluorescent fixtures and 1x4 acrylic lens 2-lamp fluorescent fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic. The light fixtures are on 8’ centers in a variety of patterns.

B. The offices have 2x4 fluorescent fixtures. The lamps are T8 with a color temperature of 5000K. The ballasts are electronic.

C. Exterior perimeter wall-pack fixtures, canopy and parking lot lighting were recently updated to LED in 2017.

Observations

A. The existing interior and exterior light fixtures are in good working order and the light levels are good also.

Expected Remaining Lifespan

A. The expected remaining lifespan of the interior light fixtures is about 10-15 more years.

Recommendations

A. Replace existing interior fluorescent lighting fixtures with LED upon failure or during future remodel projects. $200 for each fixture.

B. Replace all existing interior fluorescent lighting fixtures with LED and install new programmable digital computer network lighting controls to meet current energy codes and industry standards. Budget – $30,000
Central Kitchen
Onalaska, WI

Wiring Devices

Existing Data
A. The receptacles and toggle switches are commercial grade 20A with stainless steel plates.

Observations
A. The receptacles and toggle switches are in good working order.

Expected Remaining Lifespan
A. The expected remaining lifespan of the wiring devices is about 20-25 more years.

Recommendations
A. None.

Fire Alarm System

Existing Data
A. The fire alarm control panel is an EST3 addressable system and located in the Middle School electrical room.
B. There are pull stations by all exterior doors.
C. There are wall mounted horn strobe devices.
D. There are smoke/heat detectors.
E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.

F. All fire alarm cabling is installed in conduit.

Observations

A. The oldest notification appliances (horn/strobes) are obsolete and have reached their end of life cycle and need to be updated.

Expected Remaining Lifespan

A. The majority of the system has reached its expected life expectancy and should be replaced with new.

Recommendations

A. Consider upgrading to an audio evacuation fire alarm system:
 1. Audio Evac Fire Alarm Systems are now the normal design practice for any size school.
 2. This building is not sprinklered.
 3. The Onalaska School District has made strides and have developed a new standard for fire alarm systems, for example the Northern Hills Elementary school has an audio evacuation fire alarm system. Recommend to continue on this path for all schools in the district.
 4. Budget estimate to upgrade to audio evacuation system installation - $10,000.

Clock System

Existing Data

B. The clocks are connected to the Middle School Master Clock System. A new Master Clock Controller and clocks were installed in 2017.

C. The bell tone is controlled by the master clock controller.

Observations

A. The clocks are new and recently installed.

B. Additional clocks can be added to the system.

Expected Remaining Lifespan

A. The expected remaining lifespan of the clock system is about 15-20 more years.

Recommendations

A. None.
Intercom System

Existing Data
B. The Central Kitchen is connected to the existing Telecor intercom system in Middle School. This system is 12 years old and was installed in 2006. The amplifier is located in the IMC storage room.
C. The intercom is accessed through the intercom phones. The intercom is also accessed through the Mitel IP phone line which allows users with a code to perform a building page from any Mitel phone.
D. There are recessed ceiling mounted intercom speakers.
E. The bell system is toned through the intercom speakers.

Observations
A. The intercom system is in adequate working order.
B. Additional intercom speakers can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the intercom system is about 10 - 15 more years.

Recommendations
A. None.

Phone System

Existing Data
A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system in the Middle School. This system was installed in 2015 - 2016. New IP phones have been installed through-out the school.

Observations
A. The phone system is in good working order.
B. Additional phones can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the Mitel 3300 phone system is about 10 more years.

Recommendations
A. None.
Security System

Existing Data
A. There is an Ademco security system in the Middle School. The security control panel is located in the main electrical room.
B. The security system has motion sensors.
C. There is exterior door contact switches.

Observations
A. Security system is in working order.
B. Additional security devices can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 0-2 more years.

Recommendations
A. Replace devices when the Middle School system is updated.
Access Control System

Existing Data
B. There is an RS2 System door access control system in the Middle School which was installed for the District in 2013 - 2014.
C. There is an electric strike and key fob reader on the exterior door and service door.
D. There is an Aiphone intercom system.

Observations
A. The access control system is in good working order.
B. Additional doors can be added to this system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 10-15 more years.

Recommendations
A. None
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>CK-0001</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>Replace convection oven.</td>
<td>$18,400</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace Convection Oven</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0002</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>New dual-pressure steamer.</td>
<td>$44,275</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dual-Pressure Steamer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0003</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>New pressure steam jacketed kettle.</td>
<td>$20,700</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pressure Steam Jacketed Kettle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0004</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>New bread slicer.</td>
<td>$14,375</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace bread slicer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0005</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>Replace mixer.</td>
<td>$19,090</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace mixer</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0006</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>Replace 2-burner range.</td>
<td>$3,335</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace 2-burner range</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0007</td>
<td>10/10/13</td>
<td>Kitchen Equipment</td>
<td>Equipment Replacement</td>
<td>Replace Hobart dishwasher.</td>
<td>$41,000</td>
<td>8/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Replace Hobart Dishwasher</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ck-0008</td>
<td>10/10/13</td>
<td>Equipment Hook-Ups</td>
<td>Installation Costs</td>
<td>Complete installation and hook-up of new equipment.</td>
<td>$14,375</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0009</td>
<td>10/10/13</td>
<td>Entrance Door Replacement</td>
<td>Maintenance</td>
<td>Replace existing hollow metal door frame and sidelite at main entrance to Central Kitchen.</td>
<td>$3,680</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0010</td>
<td>10/10/13</td>
<td>Replace Grease Interceptor</td>
<td>Equipment Replacement</td>
<td>Replace Existing undersized grease interceptor and associated piping</td>
<td>$25,000</td>
<td>8/1/14</td>
<td>Complete</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CK-0011</td>
<td>10/10/13</td>
<td>Remodel Toilet Rooms</td>
<td>Remodeling for Code issues</td>
<td>Remodel existing toilet rooms to comply with the current ADA guidelines for handicap accessibility.</td>
<td>$28,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ITEM NO.</td>
<td>DATE ENTERED</td>
<td>KEY DESCRIPTION</td>
<td>REASON</td>
<td>DESCRIPTION</td>
<td>EST. COST</td>
<td>ACTION DATE</td>
<td>PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------</td>
<td>-------------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------------</td>
</tr>
<tr>
<td>CK-0012</td>
<td>03/08/18</td>
<td>Replace cast iron drain piping.</td>
<td>Maintenance</td>
<td>Include as part of kitchen remodeling work.</td>
<td>$50,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CK-0012</td>
<td>03/08/18</td>
<td>Install gas panic shut-off valve.</td>
<td>NFPA Code</td>
<td>Install new emergency gas shut-off to kitchen equipment under main kitchen exhaust hood.</td>
<td>$5,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CK-0013</td>
<td>03/08/18</td>
<td>Install gas piping above floor for kitchen equipment under hood.</td>
<td>Good practice</td>
<td>Replace underground ground with above floor gas piping.</td>
<td>$7,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CK-0014</td>
<td>03/08/18</td>
<td>Install exterior grease interceptor</td>
<td>Plbg Code</td>
<td>Install when remodeling the Kitchen</td>
<td>$40,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CK-0015</td>
<td>03/08/18</td>
<td>Replace CI drain piping</td>
<td>Poor condition</td>
<td>Install when remodeling the Kitchen</td>
<td>$50,000</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CK-0016</td>
<td>03/08/18</td>
<td>Install Gas Panic shut off valve</td>
<td>NFPA Code</td>
<td>Shuts off Gas to KEQ under Hood</td>
<td>$5,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CK-0017</td>
<td>03/08/18</td>
<td>Install Gas above floor for KEQ under hood</td>
<td>Good practice</td>
<td>Replace underground gas with above ground gas piping</td>
<td>$7,500</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CK-0018</td>
<td>4/03/18</td>
<td>Upgrade Lighting fixtures to LED</td>
<td>Energy Upgrade</td>
<td>Remove existing fluorescent lighting fixtures and replace with new LED lighting fixtures. Provide programmable digital lighting controls.</td>
<td>$30,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>CK-0019</td>
<td>4/03/18</td>
<td>Upgrade fire alarm control system to Voice Evac</td>
<td>System Upgrade</td>
<td>Upgrade existing fire alarm system to Voice Evac to match what is installed at Northern Hills Elementary School.</td>
<td>$10,000</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
2018
Facilities Condition Assessment
School District of Onalaska
FACILITIES CONDITION ASSESSMENT

FACILITY

District Office
237 2nd Ave. South
Onalaska, WI 54650

BUILDING DATA

Building Area
Central Office 11,200 SF

Construction Type: Type II-B Noncombustible

Fire Protection Non-sprinklered
FACILITIES CONDITIONS ASSESSMENT

1.0 BUILDING ENVELOPE

1.1 EXTERIOR WALLS

Observations
The remodeling of the Festival Support Center building involved minimal modifications to convert to the new District Office. Exterior walls consist of face brick and EIFS and appear to be in satisfactory condition except the northeast and east wall where there is a lack of insulation and wall/foundation cracking. The remodeling also included the installation of new thermal design aluminum windows at the south wall.

Recommendations
Repair northeast and east walls that show deterioration and cracking, as well as reinsulate.

1.2 BUILDING INTERIOR

Observations
With the exception of minor room build-outs, the building was ready for move-in by the District personnel. Interior work primarily involved the modifications associated with office doors.

Recommendations
No work required.

1.3 ROOFING

Observations
The entire building was re-roofed and involved a total tear-off of the existing roofing down to the wood deck. Raise HVAC curbs, plumbing vents. The entire roof was covered with tapered EPS (Avg. R=18). New membrane consists of a fully-adhered single-ply rubber. Metal cap flashing was replaced on north wall. Installed new gutters and downspouts.

Recommendations
No work required.

2.0 HANDICAP ACCESSIBILITY

2.1 ACCESSIBLE ROUTE

Existing Conditions
An “accessible route” is a continuous, unobstructed path leading to a building entrance

Recommended Action:
No work is required.

2.2 ACCESSIBLE ENTRANCE

Existing Condition
The main entrance on the south side serves as the primary accessible entrance.
Recommended Action
No work is required.

2.3 ACCESSIBLE INTERIOR CIRCULATION
All rooms are located on main level.

Recommendations
No action required.

2.4 ACCESSIBLE TOILET FACILITIES
One set of toilet room facilities are designed to be ADA compliant.

Recommended Action
No action required.
FACILITIES CONDITION ASSESSMENT

FACILITY

District Office & Garage Annex
237 2nd Ave. South
Onalaska, WI 54650

BUILDING DATA

Building Area 2,572 SF
Construction Type: Type II-B Noncombustible
Fire Protection Non-sprinklered
FACILITIES CONDITIONS ASSESSMENT

1.0 BUILDING USE

1.1 At the time of this report, the annex building had not been assigned any particular usage by the District.

2.0 BUILDING ENVELOPE

2.1 EXTERIOR WALLS & ROOF

Observations
The garage annex building consists of a single story exterior masonry and wood framed roof structure located across the alley from the new District Office. The east side of the annex is built back into the embankment. The interior of the building was in process of being gutted.

Recommendations
It is suggested that a closer structural examination be considered to evaluate the lateral pressure on the east wall as a result of building back into the site embankment. Structural corrections may dictate reinforcing and buttressing the east wall if the lateral load pressures appear to be exerting soil pressure on the masonry foundation wall.

2.2 ROOFING

Observations
A proposal to replace the roof system has been submitted to the District for all work associated with the re-roofing of the annex building. The work involved would include removing the existing membrane down to the wood deck, raising of HVAC curbs, plumbing vents and electrical work. The proposed action would install a new fully-adhered rubber membrane over tapered EPS insulation. Metal roof edge cap flashing and gravel stop flashing would be fabricated of standard 24-ga, prefinished galvanized metal.

Recommendations
Suggest delaying any major repairs until a decision is reached on how to utilize the annex building. Continue to monitor walls and roof system for corrective action that may require immediate attention (i.e. roof leaks, wall cracks).
Administration Building
Site Facility Assessment Comments

The District Administration Building site is in good shape except where identified in the Assessment. The drainage issue should be addressed in the near future due to potential damage to the existing storage building due to infiltrating water.
Plumbing

The following report is the result of a site visit by Bob Novak, Tailored Engineering, that occurred March 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations
 1. Water heating equipment consists of an electric water heater. The heaters appear to be in good condition.
 2. The building is served by a Hillenbrand H125 water softener. The HW & CW is softened.

B. Recommendations
 1. Provide maintenance on water heater as required.
 2. Provide required maintenance on the existing equipment as required

C. Expected Remaining Lifespan
 1. Plumbing equipment should have a life span of 15 years on the water heating equipment.

Plumbing Fixtures

A. Observations
 1. Plumbing fixtures are generally in good condition.
 2. Toilets are tank type.
 3. EWCs have bottle fillers.

B. Expected Remaining Lifespan
 1. Plumbing fixtures should have a life expectancy of 25 years.
Sanitary/Storm Piping

A. Observations
 1. The existing piping system is SCH 40 PVC piping. The owner expressed no concerns with the sanitary piping system.
 2. There is no storm piping, roof drains to gutters and downspouts

B. Expected Remaining Lifespan
 1. Sanitary piping should have a life expectancy of 40 years.

Domestic Water Piping

A. Observations
 1. The building is served by a 1 ½”K copper water service and 1 ½”meter. The existing service appears to be adequately sized for the building.
 2. There is a Lawn irrigation system.
 3. All domestic water piping is Type "L" copper tubing and is in very good condition.

C. Expected Remaining Lifespan
 2. Water piping should have a life expectancy of 30 years depending on the water quality.
Plumbing

The following report is the result of a site visit by Bob Novak, Tailored Engineering, that occurred March 2018. Site observations were used in the preparation of this report.

Plumbing Equipment

A. Observations
 1. Water heating equipment consists of a 50gal electric water heater. The heater appears to be in good condition.
 2. There is a Sanitary Pit with a single pump for Building Sanitary Sewer.

B. Expected Remaining Lifespan
 1. Plumbing equipment should have a life span of 10 years on the water heating equipment.
 2. Details on Sanitary pump are unknown.
Plumbing Fixtures

A. Observations
 1. Plumbing fixtures are old and need replacement.
 2. Toilet is tank type.

B. Expected Remaining Lifespan
 1. Replace Plumbing fixtures.

Sanitary/Storm Piping

A. Observations
 1. The existing piping system is SCH 40 PVC piping. The sewer to the street is CI pipe.
 2. There is no storm piping.

Domestic Water Piping

A. Observations
 1. The building is served by a 1"K copper water service and 3/4" meter.
 2. There is a Lawn irrigation system.
 3. All domestic water piping is Type "L" copper tubing and is in very good condition.

B. Expected Remaining Lifespan
 1. Water piping should be replaced if remodeled.
The following report is the result of a site visit by Randy All of Fredericksen Engineering, Inc. that occurred on March 2, 2018. Site observations and interviews with staff were used in the preparation of this report.

Heating, Ventilation and Air Conditioning Systems

A. Existing Data

1. This building was remodeled and occupied by the district in 2017. The existing HVAC equipment was left in place and reused with only the ductwork distribution systems being modified to accommodate the remodeling work. The exact age of the existing equipment is not known.

2. The building HVAC system consists of multiple system types. The administration and human resources areas are served by two (2) Carrier gas/electric packaged rooftop units. The rooftop systems utilize zone dampers to provide zone control. The facilities, data services, and pupil services areas are served by three (3) high-efficiency gas-fired furnaces with direct-expansion cooling. Two of the furnace systems utilize zone dampers for zone control while the third furnace is a single-zone unit.

3. The data center room is cooled by two (2) Carrier ductless split systems. One unit serves is redundant. However, one of the units is currently not operational.

4. The data workroom is cooled by an LG ductless split system. The unit does not contain a heating section. Heat for the room is provided by a basic electric heating unit that plugs into a wall outlet.

5. The building is controlled by a combination of zone control systems and standalone electronic thermostats.

B. Observations

1. The existing equipment appears to be at least 10 years old and is in satisfactory condition. However, it was reported that the ability to control temperatures and humidity in the building is poor.

2. One of the Carrier ductless split system units serving the data center is not currently operational and in need of replacement.

3. The data workroom is currently not ventilated to meet code requirements for an occupied space. The electric space heater and the LG ductless split system do not provide any ventilation air to the room.
C. Recommendations

1. Remove the existing HVAC systems and serve the entire building utilizing two (2) VAV packaged rooftop units with hot water reheat VAV boxes served by a high-efficiency condensing boiler plant with variable flow pumping. A new digital control system would be utilized to control the building to be consistent with the current district standards.
District Office
Onalaska, WI

Electrical System Review (Updated 4/03/2018)
The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

The Onalaska School District Office had a complete renovation project in 2017.

Electric Service

Existing Data

A. The District Office has an 800 amp 120/208 volt 3-phase 4-wire electric service. The service is fed from a utility owned pad mounted transformer. The CT cabinet is located on the exterior of the building. The meter socket is mounted to the CT cabinet. The main service panelboard consists of a 800 amp main circuit breaker with space for additional branch feeders. This service equipment was installed in 2017. The distribution panelboard is Square ‘D’. There are spaces available for future circuit breakers.

Observations

A. The main Distribution Panelboard has empty spaces for additional branch circuit breakers.
District Office
Onalaska, WI

B. The panelboard is new and in good working order.

Expected Remaining Lifespan

C. The expected remaining lifespan of the main distribution panelboard is about 30-35 more years.

Recommendations

D. None.

Panelboards

Existing Data

There are three (3) panelboards, 225 Amps., 120/208VAC, 3-Phase, 4-Wire with 42 circuits each, they are Square ‘D’.

Observations

E. Panelboards have empty spaces for additional branch circuit breakers.

F. The panelboards are in good working order.
Expected Remaining Lifespan

G. The expected remaining lifespan of the panelboards is about 30-35 more years.

Recommendations

H. None.

Lighting Fixtures and Controls

Existing Data

A. The interior and exterior lighting fixtures are LED.
B. There is emergency egress lighting units.
C. The building lighting system is partially controlled by energy saving occupancy sensors.

Observations

A. The existing interior and exterior light fixtures are in good working order and the light levels are good also.

Expected Remaining Lifespan
The expected remaining lifespan of the interior light fixtures is about 20-25 more years.

Recommendations
A. None.

Wiring Devices

Existing Data
A. The receptacles and toggle switches are commercial grade 20A with thermo plastic cover plates.

Observations
A. The receptacles and toggle switches are in good working order.
B. There are only two duplex receptacles installed on the average in each office.

Expected Remaining Lifespan
A. The expected remaining lifespan of the wiring devices is about 20-25 more years.

Recommendations
A. Install additional duplex receptacles in each office as needed. Budget $380.00 each.
Fire Alarm System

Existing Data
A. The existing fire alarm control panel was an outdated Ademco system, however it was upgraded to an addressable Honeywell system in 2017.
B. There are pull stations by all exterior doors.
C. There are wall mounted horn strobe devices.
D. There are smoke/heat detectors.
E. There are duct smoke detectors in the air handling units operating at 2000 CFM or greater.
F. All fire alarm cabling is installed in conduit.

Observations
A. The fire alarm system is new and in good working condition.

Expected Remaining Lifespan
A. 10 - 15 years.

Recommendations
A. None
Phone System

Existing Data
A. There is a recently installed Mitel 3300 IP (Internet Protocol) phone system in the Middle School. This system was installed in 2015 - 2016. New IP phones have been installed throughout the school.

Observations
A. The phone system is in good working order.
B. Additional phones can be added to the system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the Mitel 3300 phone system is about 10 more years.

Recommendations
A. None

Data System

Existing Data
A. There are two (2) MDF data racks located in a data room.
B. The MDF data racks are connected with single-mode fiber optic cable. The MDF of all the schools in the district are connected together with single-mode fiber optic cable.

C. The data cable is CAT5e plenum rated which is routed to patch panels in the data racks.

D. The patch panels in the data rack are CAT5e.

E. There is a UPS.

Observations

A. The data system is in good working order.

B. Additional horizontal runs of data cable can be added to the existing rack.

C. Wireless Access Point system was recently upgraded for the School District in 2017-2018. The Computer Network wireless access system is adequate for today’s needs and for anticipated near future.

Expected Remaining Lifespan

A. The expected remaining lifespan of the CAT5e data cable is about 7-10 more years.

B. The expected remaining lifespan of the network equipment is about 7-10 more years.

Security System

Existing Data

A. There is a Honeywell security system installed in 2017.

B. The security system has motion sensors and a keypad.
C. There are exterior door contact switches.

Observations
A. Security system is in good working order.
B. Additional security devices can be added.

Expected Remaining Lifespan
A. The expected remaining lifespan of the security system is about 10 - 15 more years.

Recommendations
A. None.

CCTV

Existing Data
A. There is a server based IP CCTV system used throughout all the buildings in the district.
B. There are Five (5) interior and Three (3) exterior fixed color IP cameras.
C. There is 30-day recording capability.

Observations
D. The CCTV system is in good working order.
E. Additional cameras can be added.

Expected Remaining Lifespan
F. The expected remaining lifespan of the CCTV system is about 7 more years.

Recommendations
G. None

Access Control System

Existing Data
H. There is an RS2 System door access control system which was installed for the District in 2013 - 2014.
I. There are two (2) electric strikes and key fob readers on the main exterior doors and one in the Server Room.
J. There is an Aiphone intercom system for the front entrance door.

Observations
A. The access control system is in good working order.
B. Additional doors can be added to this system.

Expected Remaining Lifespan
A. The expected remaining lifespan of the access control system is about 10-15 more years.

Recommendations
A. None
District Office Annex
Onalaska, WI

Electrical System Review (Updated 4/03/2018)
The following report is the result of a site visit by Galileo Consulting Group LLC on April 3, 2018. Site observations, construction plan review, and interviews with staff were all used in the preparation of this report. All construction costs indicated in this report are opinions.

Electric Service

Existing Data

A. A 225 amp., 120/208 volt, 3-phase 4-wire feeder will be installed originating from the District Office Main Distribution Panelboard and will terminate in a new fusible disconnect in the Annex building. This disconnect switch will replace the existing one. This work will be completed in 2018.
Existing Data

There is One (1) existing Cutler Hammer panelboard, 225 Amps., 120/208VAC, 3-Phase, 4-Wire with 42 circuits. The second panelboard is a Cutler Hammer, 125 amp., 120/208VAC, 3-phase, 4-wire sub-panel with 30 circuits.

Observations

A. These panelboards are outdated and should be replaced with new during future remodel projects.

Expected Remaining Lifespan

B. These panelboards have exceeded their useful life and should be replaced.

Recommendations

C. Replace with new panelboards.
Existing Data

A. The interior lighting fixtures are 4'-0", single-lamp fluorescent 'strip' lights with electronic ballasts and T8 lamps.
B. There are no emergency egress lighting units.
C. There are no occupancy sensors or lighting controls.

Observations

A. The existing interior and exterior light fixtures are outdated and should be replaced with future remodel projects.

Expected Remaining Lifespan

A. 0 – 3 years.

Recommendations

A. Replace with new energy efficient LED lighting fixtures and controls.
District Office Annex
Onalaska, WI

Wiring Devices

Existing Data
A. There are 15 amp., and 20 amp. receptacles and toggle switches with metal cover plates.

Observations
A. The receptacles and toggle switches are outdated and should be replaced with new. A few receptacles are broken.

Expected Remaining Lifespan
A. The wiring devices have exceeded their expected useful life

Recommendations
A. Replace with new.
District Office Annex
Onalaska, WI

Fire Alarm System

Existing Data
A. The existing fire alarm control panel is an outdated Gemini system in combination with the Security System. It is no longer functioning.
B. There are no pull stations by exterior doors.
C. There are ceiling mounted horn strobe devices.
D. There are smoke/heat detectors.
E. All fire alarm cabling is installed in conduit.

Observations
A. The fire alarm system is outdated and no longer operating.

Expected Remaining Lifespan
A. Not Applicable, obsolete.

Recommendations
A. Replace with new.
Existing Data
 A. There is only One (1) phone jack and One (1) data jack in the building.

Observations
 A. The phone jack and cable is CAT 3.
 B. The Data jack is CAT 5e.

Expected Remaining Lifespan
 A. 0 – 5 yrs.

Recommendations
 A. Replace with new.
Security System

Existing Data
A. There is an outdated Gemini security system.
B. The security system has motion sensors and a keypad.
C. There are exterior door contact switches.

Observations
A. Security system is obsolete and not functioning.

Expected Remaining Lifespan
A. Not Applicable, obsolete and not functioning.

Recommendations
A. Replace with new, match the same hardware and devices as previously installed in the District Office.
2018 - ONALASKA SCHOOL DISTRICT
FACILITY CONDITION ASSESSMENT

Onalaska High School

Updated: March 2018

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>DO-0009</td>
<td>2/6/18</td>
<td>Garage Renovation</td>
<td>Remodel for Code Issues</td>
<td>Update MEP</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DO-0010</td>
<td>2/6/18</td>
<td>HVAC Replacement</td>
<td>Operational</td>
<td>Replace failed data room A/C unit</td>
<td>$10,000</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DO-0011</td>
<td>2/6/18</td>
<td>HVAC Replacement</td>
<td>Operational</td>
<td>Replace failing A/C unit with new split system w/ heat in DS workroom</td>
<td>$15,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DO-0012</td>
<td>3/8/18</td>
<td>NE Corner of the Storage Bldg</td>
<td>Maintenance</td>
<td>Low area next to Storage Bldg - It looks like this area has been a problem for a while with some attempts to make a correction that do not seem to have been successful</td>
<td>$500</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>DO-0013</td>
<td>4/03/18</td>
<td>Install 2-additional duplex receptacles per office</td>
<td>Building upgrade</td>
<td>In existing offices that only have 2- duplex receptacles, install 2- additional duplex receptacles</td>
<td>$7,600 ($380 Ea.)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DO-0014</td>
<td>04/05/2018</td>
<td>HVAC System Replacement</td>
<td>System Replacement</td>
<td>Remove the existing HVAC systems and serve the entire building utilizing two (2) VAV packaged rooftop units with hot water reheat VAV boxes served by a high-efficiency condensing boiler plant with variable flow pumping. A new digital control system would be utilized to control the building to be consistent with the current district standards</td>
<td>$23 per square foot $258,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DO-0015</td>
<td>4/13/2018</td>
<td>Water Run-Off</td>
<td>Maintenance</td>
<td>Install drain systems on the east side of building to redirect water flow</td>
<td>$15,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DO-0016</td>
<td>4/13/2018</td>
<td>Building envelope</td>
<td>Maintenance</td>
<td>Seal the north and east side where the alley meets the building</td>
<td>$15,000</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>DO-0017</td>
<td>4/13/2018</td>
<td>Building envelope</td>
<td>Maintenance</td>
<td>Seal and insulate north and east exterior walls</td>
<td>$25,000</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Roof Repair Priority Levels

LEVEL 1
Roof repair requirements under this priority should receive immediate attention to prevent further roof leakage damage or potential roof leakage. Repair work may include patching or flashing of existing roofing, or roof membrane replacement if determined to be necessary to ensure leak protection.

LEVEL 2
Roof repair or replacement work under this level should be completed within a scheduled timetable as recommended by the District’s roofing consultant. Repair work may include patching or flashing of existing roofing, or total replacement of roof insulation and roof membrane.

LEVEL 3
Proposed work under this level can be indefinitely deferred or addressed on an ‘as-needed’ basis as conditions change. Repair or replacement work are not considered as urgent but should be monitored annually.
<table>
<thead>
<tr>
<th>BUILDING</th>
<th>ROOF AREA DESIGNATION</th>
<th>ROOF TYPES</th>
<th>MANUFACTURER/ROOFER</th>
<th>ROOF AREA</th>
<th>WARRANTY</th>
<th>AGE</th>
<th>REPLACEMENT PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>High School</td>
<td>Area HS-1</td>
<td>Ballasted EPDM</td>
<td></td>
<td>6,047 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-2</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>13,395 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-3</td>
<td>Ballasted EPDM</td>
<td></td>
<td>5,842 SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-4</td>
<td>Ballasted EPDM</td>
<td></td>
<td>5,916 SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-5</td>
<td>Ballasted EPDM</td>
<td></td>
<td>3,396 SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-6</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,076 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-7</td>
<td>Ballasted EPDM</td>
<td></td>
<td>36,713 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-8</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>5,240 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-9</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>12,421 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-10</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>8,770 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-11</td>
<td>Fully-Adhered EPDM</td>
<td>Firestone / McCabe Roofing</td>
<td>1,085 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-12</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,019 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-13</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,455 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------------------</td>
<td>----------------</td>
<td>------------------------</td>
<td>-----------</td>
<td>----------</td>
<td>-----</td>
<td>---------------------------</td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-14</td>
<td>Fully-Adhered EPDM</td>
<td></td>
<td>4,448 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-15</td>
<td>Ballasted EPDM</td>
<td></td>
<td>7,861 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-16</td>
<td>Ballasted EPDM</td>
<td></td>
<td>1,682 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-17</td>
<td>Asphalt Shingles</td>
<td></td>
<td>747 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>High School</td>
<td>Area HS-18</td>
<td>Ballasted EPDM</td>
<td></td>
<td>28,698 SF</td>
<td></td>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------------------</td>
<td>-------------------------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>----------</td>
<td>------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-1</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>82,905 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-2</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>688 SSF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-3</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>672 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-4</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,784 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-5</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,603 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-6</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>8,247 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-7</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>709 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-8</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>318 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-9</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>4,445 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-10</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>8,945 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-11</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>5,311 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Middle School</td>
<td>Area MS-12</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>440 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Central Kitchen</td>
<td>Area CK-13</td>
<td>Mechanically-Attached EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>4,413 SF</td>
<td>20-YR.</td>
<td>2006</td>
<td></td>
</tr>
<tr>
<td>Central Kitchen</td>
<td>Area CK-14</td>
<td>Ballasted EPDM</td>
<td>Carlisle / Ledegar Roofing</td>
<td>3,264 SF</td>
<td></td>
<td></td>
<td>1999</td>
</tr>
</tbody>
</table>
Eagle Bluff Elementary

<table>
<thead>
<tr>
<th>Building</th>
<th>Roof Area Designation</th>
<th>Roof Types</th>
<th>Manufacturer / Roofer</th>
<th>Roof Area</th>
<th>Warranty</th>
<th>Age</th>
<th>Replacement Priority Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-1</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>18,421 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-2</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>4,850 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-3</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>5,602 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-4</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>9,553 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-5</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>4,101 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-6</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>3,061 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-7</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>1,111 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-8</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>10,740 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-9</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>955 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-10</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>955 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-11</td>
<td>Standing Seam Metal</td>
<td>Una-Clad / Quality Roofing</td>
<td>6,546 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>Eagle Bluff Elementary</td>
<td>Area EB-12</td>
<td>Ballasted EPDM</td>
<td>Firestone / Quality Roofing</td>
<td>3,884 SF</td>
<td>10-YR</td>
<td>1999</td>
<td></td>
</tr>
<tr>
<td>BUILDING</td>
<td>ROOF AREA DESIGNATION</td>
<td>ROOF TYPES</td>
<td>MANUFACTURER / ROOFER</td>
<td>ROOF AREA</td>
<td>WARRANTY</td>
<td>AGE</td>
<td>REPLACEMENT PRIORITY LEVEL</td>
</tr>
<tr>
<td>---------------------------</td>
<td>-----------------------</td>
<td>---------------------</td>
<td>--</td>
<td>-----------</td>
<td>----------</td>
<td>-------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-1</td>
<td>Ballasted EPDM</td>
<td>Firestone/Interstate Roofing</td>
<td>8,476 SF</td>
<td>2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-2</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>5,343 SF</td>
<td>2006 / 2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-3</td>
<td>Foamed Urethane</td>
<td>Firestone / Interstate Roofing</td>
<td>14,748 SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Irving Pertzsch Elementary</td>
<td>Area IP-4</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>8,476 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-1</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>12,075 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-2</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>590 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-3</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>1,427 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-4</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate</td>
<td>5,202 SF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-5</td>
<td>Ballasted EPDM</td>
<td>Firestone/ Interstate Roofing</td>
<td>2,827 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-6</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>5,498 SF</td>
<td>20-yr</td>
<td>2014</td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-7</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>27,832 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-8</td>
<td>Ballasted EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>8,053 SF</td>
<td>2014</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-9</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>7,937 SF</td>
<td>20-yr</td>
<td>2006</td>
<td></td>
</tr>
</tbody>
</table>
ONALASKA SCHOOL DISTRICT
FACILITY CONDITION ASSESSMENT
ROOF DATA SHEETS

<table>
<thead>
<tr>
<th>School/Location</th>
<th>Area/Zone</th>
<th>Roof Type</th>
<th>Roofing Material</th>
<th>Square Footage</th>
<th>Last Replacement Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Northern Hills Elementary</td>
<td>Area NH-10</td>
<td>Ballasted EDPM</td>
<td>Firestone / Interstate Roofing</td>
<td>2,530 SF</td>
<td>2014</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area IP-11</td>
<td>Standing Seam Metal</td>
<td></td>
<td>120 SF</td>
<td>2014</td>
</tr>
<tr>
<td>Northern Hills Elementary</td>
<td>Area IP-12</td>
<td>Standing Seam Metal</td>
<td></td>
<td>365 SF</td>
<td>2014</td>
</tr>
<tr>
<td>Riders Club Rd Activity Bldg</td>
<td>Area AS-1</td>
<td>Asphalt Shingles</td>
<td></td>
<td>32.4 Squares</td>
<td>2016</td>
</tr>
<tr>
<td>District Office</td>
<td>Area DO-1</td>
<td>Fully-adhered EPDM</td>
<td>Firestone / Interstate Roofing</td>
<td>11,043 SF</td>
<td>15 Year</td>
</tr>
<tr>
<td>District Office Entrance</td>
<td>Area CO-1</td>
<td>Standing Seam Metal</td>
<td>Firestone / Interstate Roofing</td>
<td>159 SF</td>
<td>2017</td>
</tr>
<tr>
<td>District Annex</td>
<td>Area CO-3</td>
<td>Existing EPDM</td>
<td></td>
<td>2,572 SF</td>
<td>Pending</td>
</tr>
</tbody>
</table>

VANTAGE ARCHITECTS INC.

La Crosse, WI

RS-8
AREA HS-1
6,025.50 SQ. FT.
FA

AREA HS-2
5,842.22 SQ. FT.
FA

AREA HS-3
5,586.50 SQ. FT.
B

AREA HS-4
5,586.50 SQ. FT.
B

AREA HS-5
3,345.50 SQ. FT.
B

AREA HS-6
1,978.50 SQ. FT.
B

AREA HS-7
361.75 SQ. FT.
B

AREA HS-8
524.06 SQ. FT.
FA

AREA HS-9
12,428.80 SQ. FT.
FA

AREA HS-10
8,470.62 SQ. FT.
FA

AREA HS-11
1,085.50 SQ. FT.
FA

AREA HS-12
1,094.50 SQ. FT.
B

AREA HS-13
1,436.50 SQ. FT.
B

AREA HS-14
4,448.50 SQ. FT.
FA

AREA HS-15
733.50 SQ. FT.
B

AREA HS-16
1,683.50 SQ. FT.
B

AREA HS-17
141.50 SQ. FT.
AS

AREA HS-18
28,845.20 SQ. FT.
B

ROOF TYPE LEGEND

B BALLASTED EPDM
SS STANDING SEAM METAL
FA FULLY ADHERED EPDM
MA MECHANICALLY ATTACHED EPDM
FU FOAMED URETHANE
AS ASPHALT SHINGLES
Irving Pertzsch Roof Plan

Roof Type Key
- IP-1: Ballasted EPDM 38,997 SF
- IP-2: Standing Seam Metal 5,343 SF
- IP-3: Foam Urethane 14,748 SF
- IP-4: Fully-Adhered EPDM 9,059 SF

Irving Pertzsch Elementary
524 Main Street
Onalaska, WI 54650
ASPHALT SHINGLES

ROOF TYPE LEGEND

B BALLASTED EPDM
SS STANDING SEAM METAL
FA FULLY ADHERED EPDM
MA MECHANICALLY ATTACHED EPDM
FU FOAMED URETHANE
AS ASPHALT SHINGLES

ACTIVITIES BUILDING ROOF KEY PLAN
Onalaska Roof Costs

<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>DATE ENTERED</th>
<th>KEY DESCRIPTION</th>
<th>REASON</th>
<th>DESCRIPTION</th>
<th>EST. COST</th>
<th>ACTION DATE</th>
<th>PRIORITY LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>OR-0001</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Roofing repair area EB-4 - 9,553 SF</td>
<td>$4,200</td>
<td>9/3/15</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0002</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Roofing repair area EB-1 – 18,421 SF</td>
<td>$13,400</td>
<td>9/3/15</td>
<td></td>
</tr>
<tr>
<td>OR-0003</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Roofing repair area EB-8 – 10,740 SF</td>
<td>$13,600</td>
<td>9/3/15</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0004</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Roofing repair area EB-12 – 3,884 SF</td>
<td>$2,100</td>
<td>9/3/15</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0005</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Roof repair section EB-8 and partial work on EB-1</td>
<td>$14,000</td>
<td>8/1/16</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0006</td>
<td>4/4/18</td>
<td>Eagle Bluff Roof Repair</td>
<td>Repair/Replace</td>
<td>Repair/Replace failing base termination and install new.</td>
<td>$13,425</td>
<td>7/1/17</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0007</td>
<td>4/4/18</td>
<td>District Office Roof Repair</td>
<td>Repair/Replace</td>
<td>Remove existing roofing and install new fully adhered roof</td>
<td>$75,520</td>
<td>2017</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0008</td>
<td>4/4/18</td>
<td>District Office Roof Repair</td>
<td>Repair/Replace</td>
<td>Repair/Replace Fully adhered roof</td>
<td>$9,225</td>
<td>2017</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0009</td>
<td>4/4/18</td>
<td>District Office Garage Roof Repair</td>
<td>Repair/Replace</td>
<td>Remove existing roofing and install new fully adhered roof</td>
<td>$26,850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OR-0010</td>
<td>4/4/18</td>
<td>Onalaska District High School</td>
<td>Repair/Replace</td>
<td>Repair base termination where needed, re-adhere rubber membrane to walls.</td>
<td>$2,000</td>
<td>8/6/10</td>
<td>Complete</td>
</tr>
<tr>
<td>OR-0011</td>
<td>4/4/18</td>
<td>Onalaska District High School</td>
<td>Repair/Replace</td>
<td>Remove and repair inside perimeter base termination where rubber membrane has shrunk and pulled away from walls.</td>
<td>$15,240</td>
<td>6/15/11</td>
<td>Complete</td>
</tr>
<tr>
<td>OR</td>
<td>Date</td>
<td>Location</td>
<td>Work Description</td>
<td>Cost</td>
<td>Date</td>
<td>Status</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>-------</td>
<td>---------------------</td>
<td>--</td>
<td>-------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td>OR-0012</td>
<td>4/4/18</td>
<td>Onalaska District High School</td>
<td>Repair/Replace inside perimeter base termination where rubber membrane has shrunk and pulled away from walls.</td>
<td>$6,220</td>
<td>9/2/11</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>OR-0013</td>
<td>4/4/18</td>
<td>Onalaska District High School</td>
<td>Repair/Replace upper coping cap, rubberize wall from top to bottom and end to end.</td>
<td>$2,500</td>
<td>7/8/11</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>OR-0015</td>
<td>4/4/18</td>
<td>Onalaska District High School</td>
<td>Repair/Replace roofing area HS-5</td>
<td>$920</td>
<td>8/6/15</td>
<td>Complete</td>
<td></td>
</tr>
<tr>
<td>OR-0017</td>
<td>4/4/18</td>
<td>Irving Pertsczh Elem.</td>
<td>Repair/Replace roofing</td>
<td>$9,450</td>
<td>6/28/12</td>
<td>Complete</td>
<td></td>
</tr>
</tbody>
</table>
Administration Meeting and Site Visit Notes

Attending: Fran Finco
Kent Ellickson
Dan Dahlquist
Jessica Wang
Jerry Schomberg

HIGH SCHOOL: Date: Feb. 14th, 2018 at 9 AM

Principal: Jared Schaffner
Assoc. Principal: Anna Curtis

Board Room
District Board Room has been relocated to new District Office
High school to use area as large group instruction --no work

Data Services
Data Services has been relocated to new District Offices
Consider removing the core toilet room and storage area to open up space.
Verify if ducts or piping run through space. New finishes needed.

Computer Lab
* Need new entrance to lab

Tech ED
Programs; Metals, welding, and woods
Entire lab area needs significant update
Welding booths needs separation walls and improved ventilation
Would prefer a larger open lab space, remove walls
Future program requirements need to be determined

Performing Arts Center –PAC
Need carpet replacement
Some seat bottoms are in need of repair
Seats along aisles show wear and tear @ P.Lam
Additional Storage is needed in storage pit and behind the scenes

Typical Classrooms
Lack soundproof walls

Science Labs
Labs are crowded --no fix proposed
Dance Studio * Studio is not ADA accessible
Need finish upgrade/remodeling, etc.

P.E. Locker Rooms No individual shower facilities
* Need individual unisex shower/toilet rooms

Team Locker Rooms No ADA Toilet room
Group shower only
* Need individual unisex shower/toilet rooms

Weight Room * Not ADA accessible
Room is too small, currently use corridor
Wall has been repair; batting cage cable damage
Have two single toilet rooms?

Wrestling Room * Not ADA accessible

Gymnasium * Mobile bleachers are in poor condition

Storage * Would like to extend storage room on exterior Gymnasium
If storage extends, can the door entering the gym be moved?

www.vantagearchitects.com
RENOVATE PREVIOUS DATA ROOM
RENOVATE LOCKER ROOMS
RENOVATE TECH, WOOD, & METALS SUITE
NEW FINISHES
RENOVATE FOR EGRESS REQUIREMENTS
NEW ADDITION

PREVIOUS BOARD ROOM, NO WORK

1ST FLOOR ADDITION
2ND FLOOR ADDITION

OPTION 1
Option 2
RENOVATE LOCKER ROOMS
EXISTING
RENOVATE DANCE
RENOVATE LOCKER ROOMS
Administration Meeting and Site Visit Notes

Attending: Fran Finco
Kent Ellickson
Dan Dahquist
Jessica Wang
Jerry Schomberg

MIDDLE SCHOOL: Date: Feb. 14th, 2018 at 10 AM

Principal: Jed Kees
Assoc. Principal: Deanna Wiatt

Site
* Add parking lot and parent drop-off on west side of building

Building Envelope
Precast concrete walls are poorly insulated
Exterior classrooms are cold in winter
Window replacement needed; sills have been adjust recently
The building was originally an 'open concept' that walls have been added to create pods. Pods are in good shape

Admin. Office
* Currently office is in center of building. The office suite should be relocated to the front entrance of the building.

Classrooms
* Need an additional 12 classrooms; 8 for grade level, 4 for allied arts
Currently a 32:1 student/teacher ratio, too high

Science Labs
* Would like the original science tables/casework removed to increase usable classroom space

Computer Labs
704 students, grades 6-8, existing labs are under-utilized/used for other purposes

Gymnasium
* Need upgraded P. E. facilities; Not Large enough for student body
Create performance space at end of gym expansion
Old manual wood bleachers seat approx. 200+ students
Bleachers hold 1/3 students, rest are seated on floor for school presentation
Use other school gyms (EG and NH) for sports and other activities
Need additional storage space
Locker Rooms * Need unisex locker room space

Multi-purpose Use the multi-purpose space for activities that gym cannot accommodate

*Music Suite
Music * Music room is not large enough
Practice rooms used for storage

Choir * Currently 168 students, space is to small
Practice rooms used for storage
Need space for riser storage

Band * Need to accommodate 120 students, room is to small
* Need additional practice rooms, ensemble room
* Need additional band instrument storage
Total 300 student; 6th 108 students, 7th 80 students, 8th 87 students
Need better acoustical control

Orchestra * Program has double is size, moved larger space, 60-70 students
Need storage, hallway used for instrument storage

Café/Commons Seats one grade level 260-290 seats –room has stage for presentations

Open Enrollment Space has become a limiting factor, 410-450 open enrollments in district

www.vantagearchitects.com
RELOCATE ADMIN. OFFICES
RENOVATE TO CLASSROOMS
ADD LMC SOUND ENCLOSURE
RENOVATE MUSIC SUITE, RELOCATE BAND
RENOVATE CASEWORK AT SCIENCE LABS
RENOVATE EXISTING COMMONS
NEW ADDITION
CLASSROOM ADDITION
LOCKER RM & STORAGE ADDITION W/MECHANICAL ABOVE
ALT. CLASSROOM ADDITION
COMMONS EXPANSION
CHOIR MUSIC ORCH.
BAND
RENOVATE SCIENCE CASEWORK
CLASSROOMS
CLASSROOMS
ART
WOOD SHOP
GYM
STAGE
DISH RETURN
SERV
COMMERICAL ADDITION
ADMIN OFFICES
EXISTING ENTRANCE
NEW ENTRANCE
EXISTING STUDENT DROP-OFF/PICK UP
NEW STUDENT DROP-OFF/PICK UP
EXISTING STUDENT DROP-OFF
EXISTING PARKING
EXISTING DRIVE
PROPERTY LINE
QUINCY STREET
8TH AVE NORTH
Administration Meeting and Site Visit Notes

Attending: Fran Finco
 Kent Ellickson
 Dan Dahlquist
 Jessica Wang
 Jerry Schomberg

EAGLE BLUFF ELEMENTARY SCHOOL: Date: Feb. 15th, 2018 at 11 AM

Principal: Todd Saner * Denotes Priority

Site
 Multiple site issues with erosion or wearing of vegetation
 Drainage issues at base of hill and play areas
 Consider adding additional width to drop-off/pick-up sidewalk on south

www.vantagearchitects.com
Administration Meeting and Site Visit Notes

Attending: Fran Finco
Kent Ellickson
Dan Dahquist
Jessica Wang
Jerry Schomberg

IRVING PERTZSCH ELEMENTARY SCHOOL: Date: Feb. 15th, 2018 at 10 AM

Principal: Todd Antony * Denotes Priority

Site
Lack of space for playground always remains an issue

Building
* One boiler in need of replacement

Pupil Services
Pupil Services has been relocated to new District Offices
* Consider renovating remaining space into one larger classroom, two smaller classrooms, three offices for support staff and misc storage
2 grade levels currently have 4 rooms
Open enrollment students do not come to IP, school at capacity
Future projection: up 50 students in 5 yrs and then back down
2 paging systems, Pupil Services area doesn't hear announcements, another speaker could be added or system needs to be connected differently

www.vantagearchitects.com
Administration Meeting and Site Visit Notes

Attending: Fran Finco
 Kent Ellickson
 Dan Dahlquist
 Jessica Wang
 Jerry Schomberg

NORTHERN HILLS ELEMENTARY SCHOOL: Date: Feb. 15th, 2018 at 9 AM

Principal: Amy Russ * Denotes Priority

Site May need to consider a playground fence in the future

Entrance * Need to add electrical operator connection to interior ADA operator at main vestibule, have proposal

Building Items Some cracking in gypsum board walls, will contact M&J
 Building has expansion and contraction noise

Library Slat wall trim has been separating, Library Furniture by Staples

Toilet Room Grout has cracked at corners and base cove. Should replace with soft joint.

Music Room Verify if closers are required on doors to room. Closers are not required.

www.vantagearchitects.com